共 50 条
Silica-Alumina Based Catalytic Cracking of Bio-Oil Using Double Series Reactor
被引:0
|作者:
Sunarno
[1
,2
]
Budiman, Arief
[1
,3
]
Rochmadi
[1
]
Mulyono, Panut
[1
]
机构:
[1] Gadjah Mada Univ, Fac Engn, Dept Chem Engn, Jalan Grafika 2, Yogyakarta 55284, Indonesia
[2] Riau Univ, Chem Engn Dept, Kampus Bina Widya KM 12,5, Pekanbaru 28293, Indonesia
[3] Gadjah Mada Univ, Ctr Energy Studies, Sekip K1A, Yogyakarta, Indonesia
来源:
INTERNATIONAL JOURNAL OF RENEWABLE ENERGY RESEARCH
|
2018年
/
8卷
/
01期
关键词:
Bio-oil;
catalytic cracking;
gasoline;
kerosene;
silica-alumina;
D O I:
暂无
中图分类号:
TE [石油、天然气工业];
TK [能源与动力工程];
学科分类号:
0807 ;
0820 ;
摘要:
Palm oil empty fruit bunches (EFB) which are abundantly present in Indonesia as waste with a low economic value can be processed into bio-oil through pyrolysis process. However, as it contains large molecules, bio-oil generally has a high viscosity which limits the feasibility of its utilization. In this study, the use of silica-alumina as mesoporous catalyst was examined to improve the quality of products from catalytic cracking of bio-oil by breaking down the large molecules. The effect of the catalyst weight (0-40 gram) on the yield and composition of the catalytic cracking product was investigated. Bio-oil derived from EFB was upgraded through double series reactor under atmospheric pressure to minimize coke formation. The results confirmed that the weight of catalyst affects the quality and quantity of oil product. Increasing catalyst weight from 0 to 40 gram reduced the yield of oil from 42.8 to 22.72% but increased the concentration of gasoline and kerosene from 6.61 to 17.02% and 17.53 to 24.53%, respectively. In addition, increasing catalyst weight promoted an increase in the heating value of oil from 32 to 36.7 MJ/kg.
引用
收藏
页码:414 / 420
页数:7
相关论文