ON THE ERDOS-GINZBURG-ZIV THEOREM AND THE RAMSEY NUMBERS FOR STARS AND MATCHINGS

被引:63
作者
BIALOSTOCKI, A
DIERKER, P
机构
[1] Department of Mathematics and Statistics, University of Idaho, Moscow
关键词
D O I
10.1016/0012-365X(92)90695-C
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A link between Ramsey numbers for stars and matchings and the Erdos-Ginzburg-Ziv theorem is established. Known results are generalized. Among other results we prove the following two theorems. Theorem 5. Let m be an even integer. If c : e (K2m-1) --> {0,1,...,m-1} is a mapping of the edges of the complete graph on 2m - 1 vertices into {0,1,...,m-1}, then there exists a star K1,m in K2m-1 with edges e1,e2,...,e(m) such that c(e1) + c(e2) +...+ c(e(m)) = 0 (mod m). Theorem 8. Let m be an integer. If c : (K(r+1)m-1)r) --> {0,1...,m-1} is a mapping of all the r-subsets of an (r + 1)m - 1 element set S into {0,1,..., m-1}, then there are m pairwise disjoint r-subsets Z1,Z2,...,Z(m) of S such that c(Z1) + c(Z2) +...+ c(Z(m)) = 0 (mod m).
引用
收藏
页码:1 / 8
页数:8
相关论文
共 12 条
[1]   THE CHROMATIC NUMBER OF KNESER HYPERGRAPHS [J].
ALON, N ;
FRANKL, P ;
LOVASZ, L .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 298 (01) :359-370
[2]  
ALON N, 1991, HDB COMBINATORICS
[3]  
BIALOSTOCKI A, 1990, ARS COMBINATORIA, V29A, P117
[4]  
BIALOSTOCKI A, 1990, ARS COMBINATORIA, V29A, P193
[5]  
Bialostocki A., 1990, CONGRESSUS NUMERANTI, V70, P119
[6]  
BIALOSTOCKI A, IN PRESS J GRAPH THE
[7]  
Burr S. A., 1973, UTILITAS MATHEMATICA, V4, P217
[8]  
Cockayne E. J., 1975, Journal of the Australian Mathematical Society, Series A (Pure Mathematics), V19, P252
[9]  
Davenport H., 1935, J LOND MATH SOC, V10, P30, DOI DOI 10.1112/JLMS/S1-10.37.30
[10]  
ERDOS P, 1961, B RES COUNC ISRAEL, VF 10, P41