EXTENSION PROBLEM TO AN INVERTIBLE MATRIX

被引:21
作者
TOLOKONNIKOV, V
机构
关键词
BANACH ALGEBRAS; SUBALGEBRAS OF H-INFINITY; MATRICES; PROJECTIVE MODULES; VECTOR BUNDLES;
D O I
10.2307/2159529
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The extension problem for rectangular matrices with values in Banach algebra to an invertible square matrix is investigated. For this problem to be solvable for a matrix D , the following condition is necessary: for every maximal ideal m of the algebra, the numerical matrix D(m) must have maximal rank. This condition is sufficient for many algebras, for example, for the algebras H(infinity)(R) of bounded analytic functions in a plane finitely connected domain R and to Sarason subalgebras in the algebra H(infinity).
引用
收藏
页码:1023 / 1030
页数:8
相关论文
共 13 条
[1]  
ALLAN GR, 1967, J LONDON MATH SOC, V42, P463
[2]   BOUNDED HOLOMORPHIC FUNCTIONS AND PROJECTIONS [J].
FORELLI, F .
ILLINOIS JOURNAL OF MATHEMATICS, 1966, 10 (03) :367-&
[3]   ANALYTISCHE FASERUNGEN UBER HOLOMORPH-VOLLSTANDIGEN RAUMEN [J].
GRAUERT, H .
MATHEMATISCHE ANNALEN, 1958, 135 (03) :263-273
[4]  
Husemoller D., 1966, FIBRE BUNDLES
[5]  
LAM TY, 1978, LECT NOTES MATH, V635, P1
[6]  
LIN V, 1973, J FUNCT ANAL APPL, V7, P43
[7]  
MORTINI R, 1986, MITT MATH SEM GIESSE, V185, P1
[8]  
NIKOLSKII NK, 1986, TREATISE SHIFT OPERA
[9]   TOPOLOGICAL INVARIANTS OF MAXIMAL IDEAL SPACE OF A-BANACH ALGEBRA [J].
TAYLOR, JL .
ADVANCES IN MATHEMATICS, 1976, 19 (02) :149-206
[10]  
Tolokonnikov V.A, 1981, ZAP NAUCHN SEM S PET, V113, P178