SMALL SOLUTIONS TO NONLINEAR SCHRODINGER-EQUATIONS

被引:211
|
作者
KENIG, CE
PONCE, G
VEGA, L
机构
[1] UNIV CALIF SANTA BARBARA,DEPT MATH,SANTA BARBARA,CA 93106
[2] UNIV AUTONOMA MADRID,FAC CIENCIAS,MADRID 28049,SPAIN
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 1993年 / 10卷 / 03期
关键词
NONLINEAR SCHRODINGER EQUATIONS; SMOOTHING EFFECTS;
D O I
10.1016/S0294-1449(16)30213-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that the initial value problem for the nonlinear Schrodinger equations partial derivative(t)u = iDELTAu + P(u, del(x), u, uBAR, del(x) uBAR), t is-an-element-of R, x is-an-element-of R(n), where P(.) is a polynomial having no constant or linear terms, is locally well posed for a class of ''small'' data u0. The main ingredients in the proof are new estimates describing the smoothing effect of Kato type for the group {e(itDELTA)}-infinity(infinity). This method extends to systems and other dispersive models.
引用
收藏
页码:255 / 288
页数:34
相关论文
共 50 条