GLOBAL BEHAVIOR FOR A CLASS OF NONLINEAR EVOLUTION-EQUATIONS

被引:49
作者
SACKS, PE
机构
关键词
D O I
10.1137/0516018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:233 / 250
页数:18
相关论文
共 33 条
[1]  
ALIKAKOS ND, 1982, NONLINEAR ANAL-THEOR, V6, P637
[2]   LARGE TIME BEHAVIOR OF SOLUTIONS OF NEUMANN BOUNDARY-VALUE PROBLEM FOR THE POROUS-MEDIUM EQUATION [J].
ALIKAKOS, ND ;
ROSTAMIAN, R .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (05) :749-785
[3]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[4]   STABILIZATION OF SOLUTIONS OF A DEGENERATE NON-LINEAR DIFFUSION PROBLEM [J].
ARONSON, D ;
CRANDALL, MG ;
PELETIER, LA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1982, 6 (10) :1001-1022
[5]  
ARONSON DG, 1979, CR ACAD SCI A MATH, V288, P103
[6]  
BARAS P, UNPUB NONUNICITE SOL
[7]  
BENILAN P, TSR2387 MATH RES CTR
[8]   DECAY OF SOLUTIONS OF A DEGENERATE NON-LINEAR DIFFUSION EQUATION [J].
BERTSCH, M ;
NANBU, T ;
PELETIER, LA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1982, 6 (06) :539-554
[9]  
BERTSCH M, UNPUB POSITIVITY PRO
[10]  
BREZIS H, 1979, J MATH PURE APPL, V58, P153