Recursive Median Filter for Background Estimation and Foreground Segmentation in Surveillance Videos

被引:2
作者
Diaz Gonzalez, Freddy Alexander [1 ]
Arevalo Suarez, David Alejandro [1 ]
机构
[1] Univ Sergio Arboleda, Bogota, Colombia
来源
COMPUTACION Y SISTEMAS | 2015年 / 19卷 / 02期
关键词
Temporal median; background subtraction; foreground; recurrence;
D O I
10.13053/CyS-19-2-2006
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Video cameras are widely used in surveillance systems; this offers the possibility of processing the captured images for automatic detection of events of interest that may arise in the scene. The present paper proposes a method for estimating the background and foreground segmentation in video surveillance using a recursive median filter and applying a temporal moving window in the number of frames to be analyzed, which provide more robustness against noise caused by changes in illumination and camera shake, limiting the increase in the computational cost of processing.
引用
收藏
页码:283 / 293
页数:11
相关论文
共 35 条
[1]   BAYESIAN ALGORITHMS FOR ADAPTIVE CHANGE DETECTION IN IMAGE SEQUENCES USING MARKOV RANDOM-FIELDS [J].
AACH, T ;
KAUP, A .
SIGNAL PROCESSING-IMAGE COMMUNICATION, 1995, 7 (02) :147-160
[2]  
Calderara S., 2006, P 4 ACM INT WORKSH V, V4, P211, DOI DOI 10.1145/1178782.1178814
[3]  
CCTV User Group, 2011, 2 MILL CAM UK, P10
[4]   Robust techniques for background subtraction in urban traffic video [J].
Cheung, SCS ;
Kamath, C .
VISUAL COMMUNICATIONS AND IMAGE PROCESSING 2004, PTS 1 AND 2, 2004, 5308 :881-892
[5]   Background Subtraction for Automated Multisensor Surveillance: A Comprehensive Review [J].
Cristani, Marco ;
Farenzena, Michela ;
Bloisi, Domenico ;
Murino, Vittorio .
EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2010,
[6]   Detecting moving objects, ghosts, and shadows in video streams [J].
Cucchiara, R ;
Grana, C ;
Piccardi, M ;
Prati, A .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2003, 25 (10) :1337-1342
[7]   Background and foreground modeling using nonparametric kernel density estimation for visual surveillance [J].
Elgammal, A ;
Duraiswami, R ;
Harwood, D ;
Davis, LS .
PROCEEDINGS OF THE IEEE, 2002, 90 (07) :1151-1163
[8]  
Elgammal A, 2001, PROC CVPR IEEE, P563
[9]  
Elgammal A., 2000, P 6 EUROPEAN C COMPU, P751, DOI DOI 10.1007/3-540-45053-X_48
[10]  
Ferrando S., 2006, VIDEO SURVEILLANCE S