Recursive Median Filter for Background Estimation and Foreground Segmentation in Surveillance Videos

被引:2
|
作者
Diaz Gonzalez, Freddy Alexander [1 ]
Arevalo Suarez, David Alejandro [1 ]
机构
[1] Univ Sergio Arboleda, Bogota, Colombia
来源
COMPUTACION Y SISTEMAS | 2015年 / 19卷 / 02期
关键词
Temporal median; background subtraction; foreground; recurrence;
D O I
10.13053/CyS-19-2-2006
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Video cameras are widely used in surveillance systems; this offers the possibility of processing the captured images for automatic detection of events of interest that may arise in the scene. The present paper proposes a method for estimating the background and foreground segmentation in video surveillance using a recursive median filter and applying a temporal moving window in the number of frames to be analyzed, which provide more robustness against noise caused by changes in illumination and camera shake, limiting the increase in the computational cost of processing.
引用
收藏
页码:283 / 293
页数:11
相关论文
共 45 条
  • [1] Unsupervised deep context prediction for background estimation and foreground segmentation
    Maryam Sultana
    Arif Mahmood
    Sajid Javed
    Soon Ki Jung
    Machine Vision and Applications, 2019, 30 : 375 - 395
  • [2] Unsupervised deep context prediction for background estimation and foreground segmentation
    Sultana, Maryam
    Mahmood, Arif
    Javed, Sajid
    Jung, Soon Ki
    MACHINE VISION AND APPLICATIONS, 2019, 30 (03) : 375 - 395
  • [3] Texture collinearity foreground segmentation for night videos
    Martins, Isabel
    Carvalho, Pedro
    Corte-Real, Luis
    Luis Alba-Castro, Jose
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2020, 200
  • [4] Foreground/Background Segmentation with Learned Dictionary
    David, Ciprian
    Gui, Vasile
    Alexa, Florin
    PROCEEDINGS OF THE 3RD INT CONF ON APPLIED MATHEMATICS, CIRCUITS, SYSTEMS, AND SIGNALS/PROCEEDINGS OF THE 3RD INT CONF ON CIRCUITS, SYSTEMS AND SIGNALS, 2009, : 197 - 201
  • [5] Background and foreground modeling using nonparametric kernel density estimation for visual surveillance
    Elgammal, A
    Duraiswami, R
    Harwood, D
    Davis, LS
    PROCEEDINGS OF THE IEEE, 2002, 90 (07) : 1151 - 1163
  • [6] Robust and efficient foreground analysis in complex surveillance videos
    Tian, YingLi
    Senior, Andrew
    Lu, Max
    MACHINE VISION AND APPLICATIONS, 2012, 23 (05) : 967 - 983
  • [7] Foreground Objects Segmentation in Videos with Improved Codebook Model
    Aung, Su Su
    War, Nu
    2019 INTERNATIONAL CONFERENCE ON ADVANCED INFORMATION TECHNOLOGIES (ICAIT), 2019, : 161 - 166
  • [8] Flexible background mixture models for foreground segmentation
    Cheng, Jian
    Yang, Jie
    Zhou, Yue
    Cui, Yingying
    IMAGE AND VISION COMPUTING, 2006, 24 (05) : 473 - 482
  • [9] The Foreground Segmentation Based on Surf Algorithm and Background Subtraction
    Sun, Yanxin
    Yu, Guang
    2015 SEVENTH INTERNATIONAL CONFERENCE ON ADVANCED COMMUNICATION AND NETWORKING (ACN), 2015, : 24 - 27
  • [10] Hierarchical Improvement of Foreground Segmentation Masks in Background Subtraction
    Ortego, Diego
    SanMiguel, Juan C.
    Martinez, Jose M.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2019, 29 (06) : 1645 - 1658