LARGE DEVIATIONS FOR DIFFUSION-PROCESSES COUPLED BY A JUMP PROCESS

被引:0
作者
LASRY, JM [1 ]
LIONS, PL [1 ]
机构
[1] UNIV PARIS 09,CEREMADE,CNRS,URA 749,F-75775 PARIS 16,FRANCE
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1995年 / 321卷 / 07期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a large deviations problem arising im Mathematical Finance. It concerns coupled diffusion processes by a jump process. Proofs are based upon the associated nonlinear partial differential equations and the theory of viscosity solutions.
引用
收藏
页码:849 / 854
页数:6
相关论文
共 15 条
[1]  
AVELLANEDA M, 1995, IN PRESS PRICING HED
[2]   COMPARISON PRINCIPLE FOR DIRICHLET-TYPE HAMILTON-JACOBI EQUATIONS AND SINGULAR PERTURBATIONS OF DEGENERATED ELLIPTIC-EQUATIONS [J].
BARLES, G ;
PERTHAME, B .
APPLIED MATHEMATICS AND OPTIMIZATION, 1990, 21 (01) :21-44
[3]   EXIT TIME PROBLEMS IN OPTIMAL-CONTROL AND VANISHING VISCOSITY METHOD [J].
BARLES, G ;
PERTHAME, B .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1988, 26 (05) :1133-1148
[4]  
BARLES G, 1994, MATH APPL, V17
[5]  
BLACK F, 1973, J POLITICAL EC, V3, P637
[6]   USERS GUIDE TO VISCOSITY SOLUTIONS OF 2ND-ORDER PARTIAL-DIFFERENTIAL EQUATIONS [J].
CRANDALL, MG ;
ISHII, H ;
LIONS, PL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 27 (01) :1-67
[7]  
DONSKER MD, 1975, COMMUN PUR APPL MATH, V27, P1
[8]   DIFFERENTIAL-GAMES AND REPRESENTATION FORMULAS FOR SOLUTIONS OF HAMILTON-JACOBI-ISAACS EQUATIONS [J].
EVANS, LC ;
SOUGANIDIS, PE .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1984, 33 (05) :773-797
[9]  
EVANS LC, 1983, ANN I H POINCARE, V2, P1
[10]  
FLEMING WH, 1978, APPL MATH OPT, V4, P329