MULTIPULSE JUMPING ORBITS AND HOMOCLINIC TREES IN A MODAL TRUNCATION OF THE DAMPED-FORCED NONLINEAR SCHRODINGER-EQUATION

被引:87
作者
HALLER, G
WIGGINS, S
机构
[1] CALTECH,DEPT APPL MECH,PASADENA,CA 91125
[2] CALTECH,DEPT CONTROL & DYNAM SYST,PASADENA,CA 91125
来源
PHYSICA D | 1995年 / 85卷 / 03期
基金
美国国家科学基金会;
关键词
D O I
10.1016/0167-2789(95)00120-S
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove the existence of multi-pulse orbits homoclinic to a slow manifold in a two-mode truncation of the damped-forced nonlinear Schrodinger equation (first suggested by Bishop et al.). These orbits are jumping, i.e., the corresponding solutions keep switching in time between neighborhoods of the two characteristic ''breathers'' of the integrable limit. In the case of no damping, we find multi-pulse Smale horseshoes in the two-mode model, while in the dissipative case we establish the existence of structurally stable, multi-pulse, heteroclinic connections between two unstable equilibria. The orbits we construct are not amenable to Melnikov-type perturbation methods. In both the Hamiltonian and the dissipative case we find homoclinic trees, which describe the repeated bifurcations of multi-pulse solutions. To illustrate the theoretical predictions, we also present visualizations of these complicated structures.
引用
收藏
页码:311 / 347
页数:37
相关论文
共 35 条
[1]   ON HOMOCLINIC STRUCTURE AND NUMERICALLY INDUCED CHAOS FOR THE NONLINEAR SCHRODINGER-EQUATION [J].
ABLOWITZ, MJ ;
HERBST, BM .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1990, 50 (02) :339-351
[2]   A MODAL REPRESENTATION OF CHAOTIC ATTRACTORS FOR THE DRIVEN, DAMPED PENDULUM CHAIN [J].
BISHOP, AR ;
FOREST, MG ;
MCLAUGHLIN, DW ;
OVERMAN, EA .
PHYSICS LETTERS A, 1990, 144 (01) :17-25
[3]   CORRELATIONS BETWEEN CHAOS IN A PERTURBED SINE-GORDON EQUATION AND A TRUNCATED MODEL SYSTEM [J].
BISHOP, AR ;
FLESCH, R ;
FOREST, MG ;
MCLAUGHLIN, DW ;
OVERMAN, EA .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1990, 21 (06) :1511-1536
[4]   BIFURCATIONS OF MODE EQUATIONS - SPIN-WAVES [J].
CASCON, A ;
KOILLER, J ;
REZENDE, SM .
PHYSICA D, 1991, 54 (1-2) :98-124
[5]  
CONSTANTIN P, 1988, INTEGRAL MANIFOLDS I
[6]   GEOMETRY OF THE MODULATIONAL INSTABILITY .3. HOMOCLINIC ORBITS FOR THE PERIODIC SINE-GORDON EQUATION [J].
ERCOLANI, N ;
FOREST, MG ;
MCLAUGHLIN, DW .
PHYSICA D-NONLINEAR PHENOMENA, 1990, 43 (2-3) :349-384
[7]  
ERCOLANI NM, 1991, GEOMETRY HAMILTONIAN
[8]   ON THE EXISTENCE OF CHAOS IN A CLASS OF 2-DEGREE-OF-FREEDOM, DAMPED, STRONGLY PARAMETRICALLY FORCED MECHANICAL SYSTEMS WITH BROKEN O(2) SYMMETRY [J].
FENG, Z ;
WIGGINS, S .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1993, 44 (02) :201-248
[9]   SYMMETRY-BREAKING BIFURCATIONS IN RESONANT SURFACE-WAVES [J].
FENG, ZC ;
SETHNA, PR .
JOURNAL OF FLUID MECHANICS, 1989, 199 :495-518
[10]  
FENG ZC, 1993, NONLINEAR DYNAM, V4, P398