ON THE MAXIMAL MODULUS OF POLYNOMIALS ON CANTOR SETS

被引:0
作者
WAGNER, G [1 ]
机构
[1] UNIV STUTTGART,INST MATH A,W-7000 STUTTGART 80,GERMANY
关键词
D O I
10.1016/0021-9045(91)90022-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let 0 < p < 1 8 and consider the Cantor set C*(p) (where C*( 1 3) would be the classical Cantor set). For any sequence ω = (ξ1, ξ2, ...), ξv ε{lunate} C*(p), let Bn(ω) = maxz ε{lunate} CΠv = 1n |z - ξv|. It is shown that there exists a constant θ = θ(p), independent of ω, such that Bn(ω) > (log n)θ for almost all n (i.e., all except a sequence of density zero). An analogous theorem for the unit circle C = {|z| = 1} instead of C*(p) (with "infinitely many" instead of "almost all") was proved before by the author (Bull. London Math. Soc. 12, 1980, 81-88), solving a problem of Erdös. © 1991.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 12 条
[1]  
BECK J, 1982, STUD SCI MATH HUNG, V17, P417
[2]   On the uniformly-dense distribution of certain sequences of points [J].
Erdos, P ;
Turan, P .
ANNALS OF MATHEMATICS, 1940, 41 :162-173
[3]  
Erdos P., 1975, LECT NOTES MATH, V475, P89
[4]  
GOLUZIN GM, 1969, AM MATH SOC TRANSL, V26
[5]  
Halasz G., 1981, RECENT PROGR ANAL NU, V2, P79
[6]  
Kuipers L., 1974, UNIFORM DISTRIBUTION
[7]  
LOXTON JH, 1980, COMMUNICATION
[8]  
Polya G, 1931, J REINE ANGEW MATH, V165, P4
[9]   A SEQUENCE HAS ALMOST NOWHERE SMALL DISCREPANCY [J].
TIJDEMAN, R ;
WAGNER, G .
MONATSHEFTE FUR MATHEMATIK, 1980, 90 (04) :315-329
[10]  
Tsuji M., 1958, POTENTIAL THEORY MOD