ELEMENTARY GATES FOR QUANTUM COMPUTATION

被引:3042
作者
BARENCO, A
BENNETT, CH
CLEVE, R
DIVINCENZO, DP
MARGOLUS, N
SHOR, P
SLEATOR, T
SMOLIN, JA
WEINFURTER, H
机构
[1] IBM CORP, RES, YORKTOWN HTS, NY 10598 USA
[2] UNIV CALGARY, DEPT COMP SCI, CALGARY, AB T2N 1N4, CANADA
[3] MIT, COMP SCI LAB, CAMBRIDGE, MA 02139 USA
[4] AT&T BELL LABS, MURRAY HILL, NJ 07974 USA
[5] NYU, DEPT PHYS, NEW YORK, NY 10003 USA
[6] UNIV CALIF LOS ANGELES, DEPT PHYS, LOS ANGELES, CA 90024 USA
[7] UNIV INNSBRUCK, INST EXPTL PHYS, A-6020 INNSBRUCK, AUSTRIA
来源
PHYSICAL REVIEW A | 1995年 / 52卷 / 05期
关键词
D O I
10.1103/PhysRevA.52.3457
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We show that a set of gates that consists of all one-bit quantum gates [U(2)] and the two-bit exclusive-OR gate [that maps Boolean values (x,y) to (x,x+y)] is universal in the sense that all unitary operations on arbitrarily many bits n [U(2(n))] can be expressed as compositions of these gates. We investigate the number of the above gates required to implement other gates, such as generalized Deutsch-Toffoli gates, that apply a specific U(2) transformation to one input bit if and only if the logical AND of all remaining input bits is satisfied. These gates play a central role in many proposed constructions of quantum computational networks. We derive upper and lower bounds on the exact number of elementary gates required to build up a variety of two- and three-bit quantum gates, the asymptotic number required for n-bit Deutsch-Toffoli gates, and make some observations about the number required for arbitrary n-bit unitary operations.
引用
收藏
页码:3457 / 3467
页数:11
相关论文
共 50 条
[1]   CONDITIONAL QUANTUM DYNAMICS AND LOGIC GATES [J].
BARENCO, A ;
DEUTSCH, D ;
EKERT, A ;
JOZSA, R .
PHYSICAL REVIEW LETTERS, 1995, 74 (20) :4083-4086
[2]  
BARENCO A, 1995, P ROY SOC LOND A MAT, V449, P678
[3]   THE FUNDAMENTAL PHYSICAL LIMITS OF COMPUTATION [J].
BENNETT, CH ;
LANDAUER, R .
SCIENTIFIC AMERICAN, 1985, 253 (01) :48-56
[4]   TIME-SPACE TRADE-OFFS FOR REVERSIBLE COMPUTATION [J].
BENNETT, CH .
SIAM JOURNAL ON COMPUTING, 1989, 18 (04) :766-776
[5]   LOGICAL REVERSIBILITY OF COMPUTATION [J].
BENNETT, CH .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1973, 17 (06) :525-532
[6]   COMPUTING ALGEBRAIC FORMULAS USING A CONSTANT NUMBER OF REGISTERS [J].
BENOR, M ;
CLEVE, R .
SIAM JOURNAL ON COMPUTING, 1992, 21 (01) :54-58
[7]  
BERNSTEIN E, 1993, 25TH P ANN ACM S THE, P11
[8]  
Berthiaume A., 1994, Proceedings. Workshop on Physics and Computation PhysComp '94, P60, DOI 10.1109/PHYCMP.1994.363698
[9]  
Brassard G., 1994, SIGACT News, V25, P15, DOI 10.1145/190616.190617
[10]  
BROWN J, 1994, NEW SCI, V143, P21