DIRICHLET-NEUMANN BRACKETING FOR HORN-SHAPED REGIONS

被引:14
作者
VANDENBERG, M
机构
[1] Department of Mathematics, Heriot-Watt University, Riccarton, Edinburgh
关键词
D O I
10.1016/0022-1236(92)90092-W
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use Dirichlet-Neumann bracketing to obtain sharp upper and lower bounds for the spectral counting function of the Dirichlet laplacian for a horn-shaped region in Rm. The first and second term (and an estimate for the remainder) in the asymptotic expansion of the spectral counting function are obtained for a region in R2 given by {(x1,x2: x1εR, x2ε, ∥x1∥·∥x2∥α<1}, 2- 1 2<α<2 1 2. © 1992.
引用
收藏
页码:110 / 120
页数:11
相关论文
共 22 条
[1]  
BIRMAN M. SH., 1970, FUNCT ANAL APPL+, V4, P1
[2]   1 CAN HEAR WHETHER A DRUM HAS FINITE AREA [J].
CLARK, C ;
HEWGILL, D .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 18 (02) :236-&
[5]  
Edmunds D.E., 1987, SPECTRAL THEORY DIFF
[6]  
Feller W., 1966, INTRO PROBABILITY TH, V2
[7]   ON EIGENVALUES OF LAPLACIAN IN AN UNBOUNDED DOMAIN [J].
HEWGILL, D .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1967, 27 (02) :153-&
[8]  
IVRII VY, 1987, FUNCTIONAL ANAL APPL, V20, P277
[9]  
LAI PT, 1979, CR ACAD SCI A MATH, V289, P463
[10]  
Rellich F., 1948, STUDIES ESSAYS PRESE, P329