Simulation on Distribution of Photosynthetically Active Radiation in Canopy and Optimum Leaf Rolling Index in Rice with Rolling Leaves

被引:7
|
作者
Hu Ning [1 ]
Lu Chuan-gen [2 ]
Yao Ke-min [1 ]
Zou Jiang-shi [2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Coll Appl Meteorol, Nanjing 210044, Jiangsu, Peoples R China
[2] Jiangsu Acad Agr Sci, Inst Food Crops, Nanjing 210014, Jiangsu, Peoples R China
关键词
rice; leaf rolling index; effective leaf area index; photosynthetically active radiation; utilization efficiency; population density;
D O I
10.1016/S1672-6308(08)60082-7
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
By replacing leaf area index (LAI) with effective leaf area index (ELAI) through introduction of leaf rolling index (LRI), the distributions of photosynthetically active radiation (PAR) in the canopies of three hybrid rice combinations, Liangyou E32 with high LRI, Liangyoupeijiu with moderate LRI and Shanyou 63 with non-rolling leaves (normal), were simulated. The model based on ELAI could predict more accurately than that based on LAI. The PAR interception, conversion and utilization efficiency in the three combinations were studied to evaluate their optimal LRI and LAI. The PAR utilization efficiency of Liangyou E32 was lower due to excessive rolling leaves and less ELAI, and that of Shanyou 63 was also lower because of the faulty PAR interception and lower photosynthetic rate and saturation point at lower layer in canopy. Compared with the above two combinations, Liangyoupeijiu showed more appropriate distribution of PAR interception and conversion efficiency in canopy, and higher PAR utilization efficiency. The optimal LRI and LAI for Liangyoupeijiu were 0.11 and 7.6, respectively, which were close to the observed value, 0.11 and 7.9, respectively. However, the optimum LAI was 9.8 for Liangyou E32 and 6.2 for Shanyou 63, larger or smaller than those under the current plant density, which led to lower efficiency of PAR utilization. Besides, the optimum LRI for Liangyou E32 and Shanyou 63 were 0.12 and 0.08, respectively, which were close to the actual LRI for Liangyoupeijiu (0.11).
引用
收藏
页码:217 / 225
页数:9
相关论文
共 44 条
  • [41] Comparison of seasonal and spatial variations of leaf area index and fraction of absorbed photosynthetically active radiation from Moderate Resolution Imaging Spectroradiometer (MODIS) and Common Land Model
    Tian, Y
    Dickinson, RE
    Zhou, L
    Zeng, X
    Dai, Y
    Myneni, RB
    Knyazikhin, Y
    Zhang, X
    Friedl, M
    Yu, II
    Wu, W
    Shaikh, M
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2004, 109 (D1)
  • [42] Evaluation of global leaf area index and fraction of absorbed photosynthetically active radiation products over North America using Copernicus Ground Based Observations for Validation data
    Brown, Luke A.
    Meier, Courtney
    Morris, Harry
    Pastor-Guzman, Julio
    Bai, Gabriele
    Lerebourg, Christophe
    Gobron, Nadine
    Lanconelli, Christian
    Clerici, Marco
    Dash, Jadunandan
    REMOTE SENSING OF ENVIRONMENT, 2020, 247
  • [43] Disentangling the effects of photosynthetically active radiation and red to far-red ratio on plant photosynthesis under canopy shading: a simulation study using a functional-structural plant model
    Zhang, Ningyi
    van Westreenen, Arian
    Anten, Niels P. R.
    Evers, Jochem B.
    Marcelis, Leo F. M.
    ANNALS OF BOTANY, 2020, 126 (04) : 635 - 646
  • [44] Global Data Sets of Vegetation Leaf Area Index (LAI)3g and Fraction of Photosynthetically Active Radiation (FPAR)3g Derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the Period 1981 to 2011
    Zhu, Zaichun
    Bi, Jian
    Pan, Yaozhong
    Ganguly, Sangram
    Anav, Alessandro
    Xu, Liang
    Samanta, Arindam
    Piao, Shilong
    Nemani, Ramakrishna R.
    Myneni, Ranga B.
    REMOTE SENSING, 2013, 5 (02) : 927 - 948