CONVEX POLYNOMIAL AND SPLINE APPROXIMATION IN C[-1,1]

被引:13
作者
HU, YK
LEVIATAN, D
YU, XM
机构
[1] TEL AVIV UNIV,RAYMOND & BEVERLY SACKLER FAC EXACT SCI,DEPT MATH,IL-69978 TEL AVIV,ISRAEL
[2] SW MISSOURI STATE UNIV,DEPT MATH,SPRINGFIELD,MO 65804
关键词
POLYNOMIAL AND SPLINE APPROXIMATION; DEGREE OF CONVEX APPROXIMATION;
D O I
10.1007/BF01205165
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that a convex function f is-an-element-of C[-1, 1] can be approximated by convex polynomials p(n) of degree n at the rate of omega3(f, 1/n). We show this by proving that the error in approximating f by C2 convex cubic splines with n knots is bounded by omega3(f, 1/n) and that such a spline approximant has an L(infinity) third derivative which is bounded by n3omega3(f, 1/n). Also we prove that if f is-an-element-of C2[-1, 1], then it is approximable at the rate of n-2omega(f'', 1/n) and the two estimates yield the desired result.
引用
收藏
页码:31 / 64
页数:34
相关论文
共 12 条
[1]   MONOTONE AND CONVEX APPROXIMATION BY SPLINES - ERROR-ESTIMATES AND A CURVE FITTING ALGORITHM [J].
BEATSON, RK .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (06) :1278-1285
[2]  
De Vore R., 1976, APPROXIMATION THEORY, P117
[3]   POINTWISE ESTIMATES FOR MONOTONE POLYNOMIAL-APPROXIMATION [J].
DEVORE, RA ;
YU, XM .
CONSTRUCTIVE APPROXIMATION, 1985, 1 (04) :323-331
[4]   MONOTONE APPROXIMATION BY POLYNOMIALS [J].
DEVORE, RA .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1977, 8 (05) :906-921
[5]  
HU YK, IN PRESS J APPROX TH
[6]   POINTWISE ESTIMATES FOR CONVEX POLYNOMIAL-APPROXIMATION [J].
LEVIATAN, D .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 98 (03) :471-474
[7]   MONOTONE AND COMONOTONE POLYNOMIAL-APPROXIMATION REVISITED [J].
LEVIATAN, D .
JOURNAL OF APPROXIMATION THEORY, 1988, 53 (01) :1-16
[8]  
Lorentz GG., 1968, J APPROX THEORY, V1, P501, DOI DOI 10.1016/0021-9045(68)90039-7
[9]  
Schumaker L., 1981, SPLINE FUNCTIONS BAS
[10]  
SVEDOV AS, 1979, MAT ZAMETKI, V25, P57