Meyniel's conjecture on the cop number: A survey

被引:0
|
作者
Baird, William [1 ]
Bonato, Anthony [1 ]
机构
[1] Ryerson Univ, Dept Math, Toronto, ON M5B 2K3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Cops and robbers; cop number; retract; random graph;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Meyniel's conjecture is one of the deepest open problems on the cop number of a graph. It states that for a connected graph G of order n, c(G) = O(root n). While largely ignored for over 20 years, the conjecture is receiving increasing attention. We survey the origins of and recent developments towards the solution of the conjecture. We present some new results on Meyniel extremal families containing graphs of order n satisfying c(G) >= d root n, where d is a constant.
引用
收藏
页码:225 / 238
页数:14
相关论文
共 50 条
  • [1] On Meyniel's conjecture of the cop number
    Lu, Linyuan
    Peng, Xing
    JOURNAL OF GRAPH THEORY, 2012, 71 (02) : 192 - 205
  • [2] ON THE COP NUMBER AND THE WEAK MEYNIEL'S CONJECTURE FOR ALGEBRAIC GRAPHS
    Biswas, Arindam
    Saha, Jyoti Prakash
    arXiv, 2023,
  • [3] A corrected version of Meyniel's conjecture
    Galeana-Sanchez, Hortensia
    Manrique, Martin
    Stehlik, Matej
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2012, 9 (01) : 71 - 83
  • [4] ON A CONJECTURE OF MEYNIEL
    HOANG, CT
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1987, 42 (03) : 302 - 312
  • [5] Meyniel's conjecture holds for random graphs
    Pralat, Pawel
    Wormald, Nicholas
    RANDOM STRUCTURES & ALGORITHMS, 2016, 48 (02) : 396 - 421
  • [6] Meyniel's conjecture on graphs of bounded degree
    Hosseini, Seyyed Aliasghar
    Mohar, Bojan
    Gonzalez Hermosillo de la Maza, Sebastian
    JOURNAL OF GRAPH THEORY, 2021, 97 (03) : 401 - 407
  • [7] Improvements of the theorem of Duchet and Meyniel on Hadwiger's conjecture
    Kawarabayashi, K
    Plummer, MD
    Toft, B
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2005, 95 (01) : 152 - 167
  • [8] On a Generalization of Meyniel's Conjecture on the Cops and Robbers Game
    Alon, Noga
    Mehrabian, Abbas
    ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):
  • [9] A note on the Berge-Meyniel conjecture
    Wang, Zhimin
    Zhang, Xia
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024,
  • [10] Meyniel's conjecture holds for random d-regular graphs
    Pralat, Pawel
    Wormald, Nicholas
    RANDOM STRUCTURES & ALGORITHMS, 2019, 55 (03) : 719 - 741