LYAPUNOV STABILITY THEORY OF NONSMOOTH SYSTEMS

被引:766
作者
SHEVITZ, D
PADEN, B
机构
[1] Mechanical Engineering Department, University of California at Santa Barbara, Santa Barbara
基金
美国国家科学基金会;
关键词
D O I
10.1109/9.317122
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper develops nonsmooth Lyapunov stability theory and LaSalle's invariance principle for a class of nonsmooth Lipschitz continuous Lyapunov functions and absolutely continuous state trajectories. Computable tests based on Filipov's differential inclusion and Clarke's generalized gradient are derived. The primary use of these results is in analyzing the stability of equilibria of differential equations with discontinuous right-hand side such as in nonsmooth dynamic systems or variable structure control.
引用
收藏
页码:1910 / 1914
页数:5
相关论文
共 14 条
[1]  
Aubin J.P., 1984, DIFFERENTIAL INCLUSI, DOI DOI 10.1007/978-3-642-69512-4
[2]  
Clarke F.H., 1983, OPTIMIZATION NONSMOO
[3]   VARIABLE STRUCTURE CONTROL OF NONLINEAR MULTIVARIABLE SYSTEMS - A TUTORIAL [J].
DECARLO, RA ;
ZAK, SH ;
MATTHEWS, GP .
PROCEEDINGS OF THE IEEE, 1988, 76 (03) :212-232
[4]  
Filipov Aleksei Fedorovich, 1988, AM MATH SOC, P191
[5]  
FILIPPOV AF, 1964, AM MATH SOC TRANSL, V42, P191
[6]   LOWER SEMICONTINUOUS SOLUTIONS OF HAMILTON-JACOBI-BELLMAN EQUATIONS [J].
FRANKOWSKA, H .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1993, 31 (01) :257-272
[7]  
Khalil H.K., 1992, NONLINEAR SYSTEMS
[8]  
Nathanson I. P., 1961, THEORY FUNCTIONS REA
[9]   A CALCULUS FOR COMPUTING FILIPPOV DIFFERENTIAL INCLUSION WITH APPLICATION TO THE VARIABLE STRUCTURE CONTROL OF ROBOT MANIPULATORS [J].
PADEN, BE ;
SASTRY, SS .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1987, 34 (01) :73-82
[10]   STABILITY IN GENERAL CONTROL SYSTEMS [J].
ROXIN, E .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1965, 1 (02) :115-&