Integral and Series Representations of Riemann's Zeta Function and Dirichlet's Eta Function and a Medley of Related Results

被引:14
作者
Milgram, Michael S. [1 ]
机构
[1] Geometr Unlimited Ltd, POB 1484, Deep River, ON K0J 1P0, Canada
关键词
D O I
10.1155/2013/181724
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Contour integral representations of Riemann's Zeta function and Dirichlet's Eta (alternating Zeta) function are presented and investigated. These representations flow naturally from methods developed in the 1800s, but somehow they do not appear in the standard reference summaries, textbooks, or literature. Using these representations as a basis, alternate derivations of known series and integral representations for the Zeta and Eta function are obtained on a unified basis that differs from the textbook approach, and results are developed that appear to be new.
引用
收藏
页数:17
相关论文
共 40 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS F
[2]  
Adamchik V. S., CONTRIBUTIONS THEORY
[3]  
Adamchik V. S., 1998, ANALYSIS, V18, P131, DOI DOI 10.1524/anly.1998.18.2.131
[4]  
Amdeberhan T., CAUCHY SCHLOMILCH TR
[5]  
Apostol T. M., 2010, INTRO ANAL NUMBER TH
[6]   Multiple Gamma and related functions [J].
Choi, J ;
Srivastava, HM ;
Adamchik, VS .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 134 (2-3) :515-533
[7]  
Crandall R.E., 1996, TOPICS ADV SCI COMPU
[8]   Evaluations of some classes of the trigonometric moment integrals [J].
Cvijovic, Djurdje ;
Srivastava, H. M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 351 (01) :244-256
[9]  
deBruijn N. G., 1937, ZUTPHEN B, VB5, P170
[10]   STIRLINGS SERIES AND BERNOULLI NUMBERS [J].
DEEBA, EY ;
RODRIGUEZ, DM .
AMERICAN MATHEMATICAL MONTHLY, 1991, 98 (05) :423-426