THE STRUCTURE OF C-ASTERISK-CONVEX SETS

被引:23
作者
MORENZ, PB
机构
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 1994年 / 46卷 / 05期
关键词
D O I
10.4153/CJM-1994-058-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Compact C-convex subsets of M(n) correspond exactly to n-th matrix ranges of operators. The main result of this paper is to discover the ''right'' analog of linear extreme points, called structural elements, and then to prove a generalised Krein-Milman theorem for C-convex subsets of M(n). The relationship between structural elements and an earlier attempted generalisation, called C*-extreme points, is examined, solving affirmatively a conjecture of Loebl and Paulsen [8]. An improved bound for a C*-convex version of the Caratheodory theorem for convex sets is also given.
引用
收藏
页码:1007 / 1026
页数:20
相关论文
共 11 条
[1]  
Arveson W, 1972, ACTA MATH-DJURSHOLM, V128, P271, DOI 10.1007/BF02392166
[2]   COMPLETELY POSITIVE LINEAR MAPS ON COMPLEX MATRICES [J].
CHOI, MD .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1975, 10 (03) :285-290
[3]  
Farenick D.R., 1993, LINEAR MULTILINEAR A, V34, P197
[4]   KREIN-MILMAN-TYPE PROBLEMS FOR COMPACT MATRICIALLY CONVEX-SETS [J].
FARENICK, DR .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1992, 162 :325-334
[5]   C-ASTERISK-EXTREME POINTS OF SOME COMPACT C-ASTERISK-CONVEX SETS [J].
FARENICK, DR ;
MORENZ, PB .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 118 (03) :765-775
[6]   C-ASTERISK-CONVEXITY AND MATRIC RANGES [J].
FARENICK, DR .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1992, 44 (02) :280-297
[7]   C-STAR-EXTREME POINTS [J].
HOPENWASSER, A ;
MOORE, RL ;
PAULSEN, VI .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 266 (01) :291-307
[8]   SOME REMARKS ON C-STAR-CONVEXITY [J].
LOEBL, RI ;
PAULSEN, VI .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1981, 35 (FEB) :63-78
[9]   EXTENSIONS OF CSTAR-ALGEBRAS AND ESSENTIALLY N-NORMAL OPERATORS [J].
SALINAS, N .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 82 (01) :143-146
[10]   MATRIX RANGES FOR HILBERT-SPACE OPERATORS [J].
SMITH, RR ;
WARD, JD .
AMERICAN JOURNAL OF MATHEMATICS, 1980, 102 (06) :1031-1081