ON THE UNIQUENESS OF A SPHERICALLY SYMMETRICAL SPEED OF SOUND FROM TRANSMISSION EIGENVALUES

被引:106
作者
MCLAUGHLIN, JR
POLYAKOV, PL
机构
[1] Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy
关键词
D O I
10.1006/jdeq.1994.1017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider the inverse acoustic scattering problem for spherically symmetric inhomogeneity of compact support. Define the corresponding homogeneous and inhomogeneous interior transmission problems. We study the subset of transmission eigenvalues corresponding to spherically symmetric eigenfunctions of the homogeneous interior transmission problem. These transmission eigenvalues are shown to be zeros of the scattering amplitude and also the set of eigenvalues of a special Sturm-Liouville problem. A uniqueness theorem for the potential of the derived Sturm Liouville problem is proved when the data are the given spectra and partial knowledge of the potential. A corollary of this theorem is a uniqueness theorem for the original inverse acoustic scattering problem. (C) 1994 Academic Press. Inc.
引用
收藏
页码:351 / 382
页数:32
相关论文
共 21 条
[21]  
[No title captured]