VORONOI-ALGORITHM EXPANSION OF 2 FAMILIES WITH PERIOD LENGTH GOING TO INFINITY

被引:9
作者
ADAM, B [1 ]
机构
[1] UNIV METZ, UFR MIM, DEPT MATH & INFORMAT, CNRS, URA 399, F-57045 METZ 01, FRANCE
关键词
D O I
10.2307/2153378
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider families of orders of complex. cubic fields introduced recently by Levesque and Rhin and find the Voronoi-algorithm expansions and the fundamental units. We compare with the Jacobi-Perron algorithm expansions.
引用
收藏
页码:1687 / 1704
页数:18
相关论文
共 12 条
[1]  
DELONE BN, 1964, TRANSL MATH MONOGRAP, V10
[2]  
DUBOIS E, 1995, UTILITAS MATHEMATICA, V47, P97
[3]  
DUBOIS E, 1980, THESIS U P M CURIE P
[4]  
FAHRANE A, 1992, THESIS U CAEN
[5]   PERIODIC CONTINUED-FRACTION EXPANSION AND FUNDAMENTAL UNITS OF QUADRATIC ORDER [J].
HALTERKOCH, F .
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1989, 59 :157-169
[6]  
KUHNER J, IN PRESS J NUMBER TH
[7]   2 FAMILIES OF PERIODIC JACOBI ALGORITHMS WITH PERIOD LENGTHS GOING TO INFINITY [J].
LEVESQUE, C ;
RHIN, G .
JOURNAL OF NUMBER THEORY, 1991, 37 (02) :173-180
[8]  
LOUBOUTIN S, 1993, NAGOYA MATH J, V130, P1
[9]   Fundamentals for a theory of the Jacobi continuous fraction algorithm [J].
Perron, O .
MATHEMATISCHE ANNALEN, 1907, 64 :1-76
[10]   FORMULA FOR FUNDAMENTAL UNITS IN PURE ALGEBRAIC NUMBERS OF 3RD, 4TH AND 6TH GRADE [J].
STENDER, HJ .
JOURNAL OF NUMBER THEORY, 1975, 7 (02) :235-250