3D MAGNETOHYDRODYNAMIC EQUILIBRIA WITH ANISOTROPIC PRESSURE

被引:18
作者
COOPER, WA
HIRSHMAN, SP
MERAZZI, S
GRUBER, R
机构
[1] OAK RIDGE NATL LAB,DIV FUS ENERGY,OAK RIDGE,TN
[2] ECOLE POLYTECH FED LAUSANNE,INST MACHINES HYDRAUL & MECAN FLUIDES,CH-1007 LAUSANNE,SWITZERLAND
[3] CTR SVIZZERO CALCOLO SCI,APPL SCI SVIZZERA GRP,MANNO,SWITZERLAND
基金
美国能源部;
关键词
D O I
10.1016/0010-4655(92)90002-G
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
An energy functional given by W = integral integral integral d3x[B2/(2mu0) + p(parallel-to)/(GAMMA - 1)] is proposed as a variational principle to determine three-dimensional (3D) magnetohydrodynamic (MHD) equilibria with anisotropic plasma pressure. It is demonstrated that the minimisation of W using an inverse coordinate spectral method reproduces the force balance relations that govern the MHD equilibrium properties of 3D plasmas with p(parallel-to) not-equal p(parpendicular-to) that have nested magnetic flux surfaces. Numerical procedures already developed for the scalar pressure model can be easily extended to the anisotropic pressure model. Specifically, a steepest descent procedure coupled with the application of a preconditioning algorithm to improve the convergence behaviour has been employed to minimise the energy of the system. The numerical generation of 3D torsatron equilibria with highly localised anisotropic pressure distributions attests to the robustness of the method of solution considered.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 23 条
[1]  
BAUER F, 1984, MAGNETOHYDRODYNAMIC
[2]   VARIATIONAL METHOD FOR 3-DIMENSIONAL TOROIDAL EQUILIBRIA [J].
BHATTACHARJEE, A ;
WILEY, JC ;
DEWAR, RL .
COMPUTER PHYSICS COMMUNICATIONS, 1984, 31 (2-3) :213-225
[3]  
BOOZER AH, 1983, P ADV BUMPY TORUS CO
[4]   THE BOLTZMANN EQUATION AND THE ONE-FLUID HYDROMAGNETIC EQUATIONS IN THE ABSENCE OF PARTICLE COLLISIONS [J].
CHEW, GF ;
GOLDBERGER, ML ;
LOW, FE .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1956, 236 (1204) :112-118
[5]   A 3D CODE FOR MHD EQUILIBRIUM AND STABILITY [J].
CHODURA, R ;
SCHLUTER, A .
JOURNAL OF COMPUTATIONAL PHYSICS, 1981, 41 (01) :68-88
[6]   INVERSE MOMENTS EQUILIBRIA FOR HELICAL ANISOTROPIC SYSTEMS [J].
COOPER, WA ;
HIRSHMAN, SP ;
DEPASSIER, MC .
PHYSICS OF FLUIDS, 1987, 30 (11) :3532-3539
[7]   BEAM-INDUCED TENSOR PRESSURE TOKAMAK EQUILIBRIA [J].
COOPER, WA ;
BATEMAN, G ;
NELSON, DB ;
KAMMASH, T .
NUCLEAR FUSION, 1980, 20 (08) :985-992
[8]  
Degtyarev L.M., 1987, 14TH EUR C CONTR F D, V11, P377
[9]  
GRAD H, 1967, P S APPL MATH, V18, P162
[10]   CONVERGENCE PROPERTIES OF A NONVARIATIONAL 3D MHD EQUILIBRIUM CODE [J].
GREENSIDE, HS ;
REIMAN, AH ;
SALAS, A .
JOURNAL OF COMPUTATIONAL PHYSICS, 1989, 81 (01) :102-136