Blind Source Separation of Hemodynamics from Magnetic Resonance Perfusion Brain Images Using Independent Factor Analysis

被引:1
|
作者
Chou, Yen-Chun [1 ,2 ]
Lu, Chia-Feng [1 ,2 ]
Guo, Wan-Yuo [3 ,4 ]
Wu, Yu-Te [1 ,2 ,5 ]
机构
[1] Natl Yang Ming Univ, Dept Biomed Imaging & Radiol Sci, 155,Sect 2,Li Nong St, Taipei 112, Taiwan
[2] Taipei Vet Gen Hosp, Integrated Brain Res Lab, Dept Med Res & Educ, Taipei 112, Taiwan
[3] Taipei Vet Gen Hosp, Dept Radiol, Taipei 112, Taiwan
[4] Natl Yang Ming Univ, Fac Med, Taipei 112, Taiwan
[5] Natl Yang Ming Univ, Inst Brain Sci, Taipei 112, Taiwan
关键词
D O I
10.1155/2010/360568
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Perfusion magnetic resonance brain imaging induces temporal signal changes on brain tissues, manifesting distinct blood-supply patterns for the profound analysis of cerebral hemodynamics. We employed independent factor analysis to blindly separate such dynamic images into different maps, that is, artery, gray matter, white matter, vein and sinus, and choroid plexus, in conjunction with corresponding signal-time curves. The averaged signal-time curve on the segmented arterial area was further used to calculate the relative cerebral blood volume (rCBV), relative cerebral blood flow (rCBF), and mean transit time (MTT). The averaged ratios for rCBV, rCBF, and MTT between gray and white matters for normal subjects were congruent with those in the literature.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Classifying hemodynamics of MR brain perfusion images using independent component analysis (ICA)
    Wu, YT
    Kao, YH
    Guo, WY
    Yeh, TC
    Hsieh, JC
    Teng, MMH
    PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS 2003, VOLS 1-4, 2003, : 616 - 621
  • [2] Classification of hemodynamics from dynamic-susceptibility-contrast magnetic resonance (DSC-MR) brain images using noiseless independent factor analysis
    Chou, Yen-Chun
    Teng, Michael Mu Huo
    Guo, Wan-Yuo
    Hsieh, Jen-Chuen
    Wu, Yu-Te
    MEDICAL IMAGE ANALYSIS, 2007, 11 (03) : 242 - 253
  • [3] Improvements of blind source separation by using Independent Component Analysis
    Kataoka, Hidetoshi
    Nagasaka, Kenji
    WMSCI 2007: 11TH WORLD MULTI-CONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL II, PROCEEDINGS, 2007, : 165 - +
  • [4] Blind source separation and independent component analysis
    Puntonet, Carlos G.
    Lang, Elmar W.
    NEUROCOMPUTING, 2006, 69 (13-15) : 1413 - 1413
  • [5] Independent Component Analysis and Blind Source Separation
    Barros, Allan Kardec
    Principe, Jose Carlos
    Erdogmus, Deniz
    SIGNAL PROCESSING, 2007, 87 (08) : 1817 - 1818
  • [6] A Novel Blind Separation Method in Magnetic Resonance Images
    Gao, Jianbin
    Xia, Qi
    Yin, Lixue
    Zhou, Ji
    Du, Li
    Fan, Yunfeng
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2014, 2014
  • [7] Source separation in astrophysical maps using independent factor analysis
    Kuruoglu, EE
    Bedini, L
    Paratore, MT
    Salerno, E
    Tonazzini, A
    NEURAL NETWORKS, 2003, 16 (3-4) : 479 - 491
  • [8] Tensor Based Blind Source Separation in Longitudinal Magnetic Resonance Imaging Analysis
    Stamile, Claudio
    Cotton, Francois
    Sappey-Marinier, Dominique
    Van Huffel, Sabine
    2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2019, : 3879 - 3883
  • [9] Iterative blind deconvolution in magnetic resonance brain perfusion imaging
    Grüner, R
    Taxt, T
    MAGNETIC RESONANCE IN MEDICINE, 2006, 55 (04) : 805 - 815
  • [10] BLIND AUDIO SOURCE SEPARATION USING WEIGHT INITIALIZED INDEPENDENT COMPONENT ANALYSIS
    Yadav, Ritesh Kumar
    Mehra, Rajesh
    Dubey, Naveen
    2015 1ST INTERNATIONAL CONFERENCE ON NEXT GENERATION COMPUTING TECHNOLOGIES (NGCT), 2015, : 563 - 566