Automated diagnoses of attention deficit hyperactive disorder using magnetic resonance imaging

被引:83
作者
Eloyan, Ani [1 ]
Muschelli, John [1 ,2 ]
Nebel, Mary Beth [2 ,5 ]
Liu, Han [1 ,4 ]
Han, Fang [1 ]
Zhao, Tuo [4 ]
Barber, Anita D. [2 ,5 ]
Joel, Suresh [2 ,3 ]
Pekar, James J. [2 ,3 ]
Mostofsky, Stewart H. [2 ,5 ]
Cow, Brian [1 ]
机构
[1] Johns Hopkins Univ, Dept Biostat, Bloomberg Sch Publ Hlth, Baltimore, MD 21205 USA
[2] Kennedy Krieger Inst, FM Kirby Res Ctr Funct Brain Imaging, Baltimore, MD USA
[3] Johns Hopkins Sch Med, Dept Radiol, Baltimore, MD USA
[4] Johns Hopkins Univ, Dept Comp Sci, Whiting Sch Engn, Baltimore, MD 21218 USA
[5] Johns Hopkins Sch Med, Dept Neurol & Psychiat, Baltimore, MD USA
关键词
singular value decomposition; random forest; gradient boosting; voxel-based moiphometry;
D O I
10.3389/fnsys.2012.00061
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Successful automated diagnoses of attention deficit hyperactive disorder (ADHD) using imaging and functional biomarkers would have fundamental consequences on the public health impact of the disease. In this work, we show results on the predictability of ADHD using imaging biomarkers and discuss the scientific and diagnostic impacts of the research. We created a prediction model using the landmark ADHD 200 data set focusing on resting state functional connectivity (rs-fc) and structural brain imaging. We predicted ADHD status and subtype, obtained by behavioral examination, using imaging data, intelligence quotients and other covariates. The novel contributions of this manuscript include a thorough exploration of prediction and image feature extraction methodology on this form of data, including the use of singular value decompositions (SVDs), CUR decompositions, random forest, gradient boosting, bagging, voxel-based morphometry, and support vector machines as well as important insights into the value, and potentially lack thereof, of imaging biomarkers of disease. The key results include the CUR-based decomposition of the rs-fc-fMRI along with gradient boosting and the prediction algorithm based on a motor network parcellation and random forest algorithm. We conjecture that the CUR decomposition is largely diagnosing common population directions of head motion. Of note, a byproduct of this research is a potential automated method for detecting subtle in-scanner motion. The final prediction algorithm, a weighted combination of several algorithms, had an external test set specificity of 94% with sensitivity of 21 %. The most promising imaging biomarker was a correlation graph from a motor network parcellation. In summary, we have undertaken a large-scale statistical exploratory prediction exercise on the unique ADHD 200 data set. The exercise produced several potential leads for future scientific exploration of the neurological basis of ADHD.
引用
收藏
页数:9
相关论文
共 33 条
  • [1] American Psychiatric Association, 2000, DIAGN STAT MAN MENT, DOI DOI 10.1016/B978-1-4377-2242-0.00016-X
  • [2] Toward discovery science of human brain function
    Biswal, Bharat B.
    Mennes, Maarten
    Zuo, Xi-Nian
    Gohel, Suril
    Kelly, Clare
    Smith, Steve M.
    Beckmann, Christian F.
    Adelstein, Jonathan S.
    Buckner, Randy L.
    Colcombe, Stan
    Dogonowski, Anne-Marie
    Ernst, Monique
    Fair, Damien
    Hampson, Michelle
    Hoptman, Matthew J.
    Hyde, James S.
    Kiviniemi, Vesa J.
    Kotter, Rolf
    Li, Shi-Jiang
    Lin, Ching-Po
    Lowe, Mark J.
    Mackay, Clare
    Madden, David J.
    Madsen, Kristoffer H.
    Margulies, Daniel S.
    Mayberg, Helen S.
    McMahon, Katie
    Monk, Christopher S.
    Mostofsky, Stewart H.
    Nagel, Bonnie J.
    Pekar, James J.
    Peltier, Scott J.
    Petersen, Steven E.
    Riedl, Valentin
    Rombouts, Serge A. R. B.
    Rypma, Bart
    Schlaggar, Bradley L.
    Schmidt, Sein
    Seidler, Rachael D.
    Siegle, Greg J.
    Sorg, Christian
    Teng, Gao-Jun
    Veijola, Juha
    Villringer, Arno
    Walter, Martin
    Wang, Lihong
    Weng, Xu-Chu
    Whitfield-Gabrieli, Susan
    Williamson, Peter
    Windischberger, Christian
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (10) : 4734 - 4739
  • [3] Latent Dirichlet allocation
    Blei, DM
    Ng, AY
    Jordan, MI
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2003, 3 (4-5) : 993 - 1022
  • [4] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [5] Brett M, 2001, NEUROIMAGE, V13, pS85
  • [6] Cingulate-precuneus interactions: A new locus of dysfunction in adult attention-deficit/hyperactivity disorder
    Castellanos, F. Xavier
    Margulies, Daniel S.
    Kelly, Clare
    Uddin, Lucina Q.
    Ghaffari, Manely
    Kirsch, Andrew
    Shaw, David
    Shehzad, Zarrar
    Di Martino, Adriana
    Biswal, Bharat
    Sonuga-Barke, Edmund J. S.
    Rotrosen, John
    Adler, Lenard A.
    Milham, Michael P.
    [J]. BIOLOGICAL PSYCHIATRY, 2008, 63 (03) : 332 - 337
  • [7] Large-scale brain systems in ADHD: beyond the prefrontal-striatal model
    Castellanos, F. Xavier
    Proal, Erika
    [J]. TRENDS IN COGNITIVE SCIENCES, 2012, 16 (01) : 17 - 26
  • [8] Age-related changes in motor subtle signs among girls and boys with ADHD
    Cole, W. R.
    Mostofsky, S. H.
    Larson, J. C. Gidley
    Denckla, M. B.
    Mahone, E. M.
    [J]. NEUROLOGY, 2008, 71 (19) : 1514 - 1520
  • [9] Cortes Corinna, 1995, CHEM BIOL DRUG DES, DOI [DOI 10.1007/BF00994018, DOI 10.1023/A:1022627411411]
  • [10] ANOMALIES OF MOTOR DEVELOPMENT IN HYPERACTIVE BOYS
    DENCKLA, MB
    RUDEL, RG
    [J]. ANNALS OF NEUROLOGY, 1978, 3 (03) : 231 - 233