Automated diagnoses of attention deficit hyperactive disorder using magnetic resonance imaging

被引:85
作者
Eloyan, Ani [1 ]
Muschelli, John [1 ,2 ]
Nebel, Mary Beth [2 ,5 ]
Liu, Han [1 ,4 ]
Han, Fang [1 ]
Zhao, Tuo [4 ]
Barber, Anita D. [2 ,5 ]
Joel, Suresh [2 ,3 ]
Pekar, James J. [2 ,3 ]
Mostofsky, Stewart H. [2 ,5 ]
Cow, Brian [1 ]
机构
[1] Johns Hopkins Univ, Dept Biostat, Bloomberg Sch Publ Hlth, Baltimore, MD 21205 USA
[2] Kennedy Krieger Inst, FM Kirby Res Ctr Funct Brain Imaging, Baltimore, MD USA
[3] Johns Hopkins Sch Med, Dept Radiol, Baltimore, MD USA
[4] Johns Hopkins Univ, Dept Comp Sci, Whiting Sch Engn, Baltimore, MD 21218 USA
[5] Johns Hopkins Sch Med, Dept Neurol & Psychiat, Baltimore, MD USA
关键词
singular value decomposition; random forest; gradient boosting; voxel-based moiphometry;
D O I
10.3389/fnsys.2012.00061
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Successful automated diagnoses of attention deficit hyperactive disorder (ADHD) using imaging and functional biomarkers would have fundamental consequences on the public health impact of the disease. In this work, we show results on the predictability of ADHD using imaging biomarkers and discuss the scientific and diagnostic impacts of the research. We created a prediction model using the landmark ADHD 200 data set focusing on resting state functional connectivity (rs-fc) and structural brain imaging. We predicted ADHD status and subtype, obtained by behavioral examination, using imaging data, intelligence quotients and other covariates. The novel contributions of this manuscript include a thorough exploration of prediction and image feature extraction methodology on this form of data, including the use of singular value decompositions (SVDs), CUR decompositions, random forest, gradient boosting, bagging, voxel-based morphometry, and support vector machines as well as important insights into the value, and potentially lack thereof, of imaging biomarkers of disease. The key results include the CUR-based decomposition of the rs-fc-fMRI along with gradient boosting and the prediction algorithm based on a motor network parcellation and random forest algorithm. We conjecture that the CUR decomposition is largely diagnosing common population directions of head motion. Of note, a byproduct of this research is a potential automated method for detecting subtle in-scanner motion. The final prediction algorithm, a weighted combination of several algorithms, had an external test set specificity of 94% with sensitivity of 21 %. The most promising imaging biomarker was a correlation graph from a motor network parcellation. In summary, we have undertaken a large-scale statistical exploratory prediction exercise on the unique ADHD 200 data set. The exercise produced several potential leads for future scientific exploration of the neurological basis of ADHD.
引用
收藏
页数:9
相关论文
共 33 条
[1]  
American Psychiatric Association, 2000, DIAGN STAT MAN MENT, DOI DOI 10.1016/B978-1-4377-2242-0.00016-X
[2]   Toward discovery science of human brain function [J].
Biswal, Bharat B. ;
Mennes, Maarten ;
Zuo, Xi-Nian ;
Gohel, Suril ;
Kelly, Clare ;
Smith, Steve M. ;
Beckmann, Christian F. ;
Adelstein, Jonathan S. ;
Buckner, Randy L. ;
Colcombe, Stan ;
Dogonowski, Anne-Marie ;
Ernst, Monique ;
Fair, Damien ;
Hampson, Michelle ;
Hoptman, Matthew J. ;
Hyde, James S. ;
Kiviniemi, Vesa J. ;
Kotter, Rolf ;
Li, Shi-Jiang ;
Lin, Ching-Po ;
Lowe, Mark J. ;
Mackay, Clare ;
Madden, David J. ;
Madsen, Kristoffer H. ;
Margulies, Daniel S. ;
Mayberg, Helen S. ;
McMahon, Katie ;
Monk, Christopher S. ;
Mostofsky, Stewart H. ;
Nagel, Bonnie J. ;
Pekar, James J. ;
Peltier, Scott J. ;
Petersen, Steven E. ;
Riedl, Valentin ;
Rombouts, Serge A. R. B. ;
Rypma, Bart ;
Schlaggar, Bradley L. ;
Schmidt, Sein ;
Seidler, Rachael D. ;
Siegle, Greg J. ;
Sorg, Christian ;
Teng, Gao-Jun ;
Veijola, Juha ;
Villringer, Arno ;
Walter, Martin ;
Wang, Lihong ;
Weng, Xu-Chu ;
Whitfield-Gabrieli, Susan ;
Williamson, Peter ;
Windischberger, Christian .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (10) :4734-4739
[3]   Latent Dirichlet allocation [J].
Blei, DM ;
Ng, AY ;
Jordan, MI .
JOURNAL OF MACHINE LEARNING RESEARCH, 2003, 3 (4-5) :993-1022
[4]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[5]  
Brett M, 2001, NEUROIMAGE, V13, pS85
[6]   Cingulate-precuneus interactions: A new locus of dysfunction in adult attention-deficit/hyperactivity disorder [J].
Castellanos, F. Xavier ;
Margulies, Daniel S. ;
Kelly, Clare ;
Uddin, Lucina Q. ;
Ghaffari, Manely ;
Kirsch, Andrew ;
Shaw, David ;
Shehzad, Zarrar ;
Di Martino, Adriana ;
Biswal, Bharat ;
Sonuga-Barke, Edmund J. S. ;
Rotrosen, John ;
Adler, Lenard A. ;
Milham, Michael P. .
BIOLOGICAL PSYCHIATRY, 2008, 63 (03) :332-337
[7]   Large-scale brain systems in ADHD: beyond the prefrontal-striatal model [J].
Castellanos, F. Xavier ;
Proal, Erika .
TRENDS IN COGNITIVE SCIENCES, 2012, 16 (01) :17-26
[8]   Age-related changes in motor subtle signs among girls and boys with ADHD [J].
Cole, W. R. ;
Mostofsky, S. H. ;
Larson, J. C. Gidley ;
Denckla, M. B. ;
Mahone, E. M. .
NEUROLOGY, 2008, 71 (19) :1514-1520
[9]  
Cortes Corinna, 1995, CHEM BIOL DRUG DES, DOI [DOI 10.1007/BF00994018, DOI 10.1023/A:1022627411411]
[10]   ANOMALIES OF MOTOR DEVELOPMENT IN HYPERACTIVE BOYS [J].
DENCKLA, MB ;
RUDEL, RG .
ANNALS OF NEUROLOGY, 1978, 3 (03) :231-233