MAP17, a ROS-dependent oncogene

被引:16
|
作者
Carnero, Amancio [1 ]
机构
[1] Univ Seville, CSIC, Hosp Univ Virgen del Rocio, Inst Biomed Sevilla, Campus Hosp Univ Virgen del Rocio,Edificio IBIS, Seville 41013, Spain
来源
FRONTIERS IN ONCOLOGY | 2012年 / 2卷
关键词
MAP17; cancer; oncogene; reactive oxygen species; tumorigenesis;
D O I
10.3389/fonc.2012.00112
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
MAP17 is a small 17 kDa non-glycosylated membrane protein previously identified as being overexpressed in carcinomas. Breast tumor cells that overexpress MAP17 show an increased tumoral phenotype with enhanced proliferative capabilities both in the presence or the absence of contact inhibition, decreased apoptotic sensitivity, and increased migration. MAP17-expressing clones also grow better in nude mice. The increased malignant cell behavior induced by MAP17 is associated with an increase in reactive oxygen species (ROS) production, and the treatment of MAP17-expressing cells with antioxidants results in a reduction in the tumorigenic properties of these cells. The MAP17-dependent increase in ROS and tumorigenesis relies on its PDZ-binding domain because disruption of this sequence by point mutations abolishes the ability of MAP17 to enhance ROS production and tumorigenesis. MAP17 is overexpressed in a great variety of human carcinomas, including breast tumors. Immunohistochemical analysis of MAP17 during cancer progression demonstrates that overexpression of the protein strongly correlates with tumoral progression. Generalized MAP17 overexpression in human carcinomas indicates that MAP17 can be a good marker for tumorigenesis and, especially, for malignant progression.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Rotenone inhibits embryonic chick myogenesis in a ROS-dependent mechanism
    Bagri, Kayo Moreira
    de Andrade Abraham, Christal
    Santos, Anderson Teixeira
    da Silva, Wagner Seixas
    Costa, Manoel Luis
    Mermelstein, Claudia
    TISSUE & CELL, 2024, 89
  • [22] SEPSIS INDUCES MITOCHONDRIAL ROS-DEPENDENT MITOCHONDRIAL FISSION IN THE HEART
    Zang, Q. S.
    Yao, X.
    Wolf, S. E.
    Minei, J.
    SHOCK, 2015, 43 (06): : 54 - 55
  • [23] ROS-DEPENDENT MODULATION OF TLR4 SIGNALING AND SEPSIS
    Kong, X.
    Thimmulappa, R.
    Biswal, S.
    SHOCK, 2010, 33 : 78 - 79
  • [24] ROS-dependent Activation of ASK1 in Inflammatory Signaling
    Noguchi, Takuya
    JOURNAL OF ORAL BIOSCIENCES, 2008, 50 (02): : 107 - 114
  • [25] ROS-dependent activation of interferon regulatory factor 3 by lipopolysaccharide
    Dang, O
    Navarro, L
    David, M
    JOURNAL OF LEUKOCYTE BIOLOGY, 2001, : 22 - 22
  • [26] xCT inhibition increases sensitivity to vorinostat in a ROS-dependent manner
    Watanabe, Motoki
    Miyamoto, Keiko
    Boku, Shogen
    Sakaguchi, Koichi
    Taguchi, Tetsuya
    Sowa, Yoshihiro
    Iizumi, Yosuke
    Masuda, Mitsuharu
    Narita, Takumi
    Hamoya, Takahiro
    Sakai, Toshiyuki
    Mutoh, Michihiro
    CANCER SCIENCE, 2021, 112 : 888 - 888
  • [27] xCT Inhibition Increases Sensitivity to Vorinostat in a ROS-Dependent Manner
    Miyamoto, Keiko
    Watanabe, Motoki
    Boku, Shogen
    Sukeno, Mamiko
    Morita, Mie
    Kondo, Haruhito
    Sakaguchi, Koichi
    Taguchi, Tetsuya
    Sakai, Toshiyuki
    CANCERS, 2020, 12 (04)
  • [28] Functional roles and mechanisms of ROS-dependent sumoylation in diabetic neuropathy
    Agarwal, N.
    Rangel-Rojas, D.
    Kuner, R.
    NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY, 2017, 390 : S70 - S70
  • [29] Selenium Compounds Induced ROS-Dependent Apoptosis in Myelodysplasia Cells
    Gonaclves, Ana Cristina
    Barbosa-Ribeiro, Andre
    Alves, Vera
    Silva, Teresa
    Sarmento-Ribeiro, Ana Bela
    BIOLOGICAL TRACE ELEMENT RESEARCH, 2013, 154 (03) : 440 - 447
  • [30] Structural basis of inhibition of the human SGLT2–MAP17 glucose transporter
    Yange Niu
    Rui Liu
    Chengcheng Guan
    Yuan Zhang
    Zhixing Chen
    Stefan Hoerer
    Herbert Nar
    Lei Chen
    Nature, 2022, 601 : 280 - 284