Optimal Paths on Urban Networks Using Travelling Times Prevision

被引:15
作者
Cutolo, Alfredo [1 ]
De Nicola, Carmine [1 ]
Manzo, Rosanna [1 ]
Rarita, Luigi [1 ]
机构
[1] Univ Salerno, Via Ponte Don Melillo, I-84084 Fisciano, Italy
关键词
D O I
10.1155/2012/564168
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We deal with an algorithm that, once origin and destination are fixed, individuates the route that permits to reach the destination in the shortest time, respecting an assigned maximal travel time, and with risks measure below a given threshold. A fluid dynamic model for road networks, according to initial car densities on roads and traffic coefficients at junctions, forecasts the future traffic evolution, giving dynamical weights to a constrained K shortest path algorithm. Simulations are performed on a case study to test the efficiency of the proposed procedure.
引用
收藏
页数:9
相关论文
共 13 条
[1]   Numerical simulations of traffic data via fluid dynamic approach [J].
Blandin, S. ;
Bretti, G. ;
Cutolo, A. ;
Piccoli, B. .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 210 (02) :441-454
[2]  
Bressan A., 2000, HYPERBOLIC SYSTEMS C
[3]   A tracking algorithm for car paths on road networks [J].
Bretti, Gabriella ;
Piccoli, Benedetto .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2008, 7 (02) :510-531
[4]   Traffic flow on a road network [J].
Coclite, GM ;
Garavello, M ;
Piccoli, B .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 36 (06) :1862-1886
[5]  
GALLO G, 1986, MATH PROGRAM STUD, V26, P38, DOI 10.1007/BFb0121087
[6]  
GARAVELLO M, 2006, APPL MATH SERIES, V1
[7]  
GODLEWSKY E, 1996, NUMERICAL APPROXIMAT
[8]  
Godunov S.K., 1959, MAT SBORNIK, V47, P271
[9]   A class of label-correcting methods for the K shortest paths problem [J].
Guerriero, F ;
Musmanno, R ;
Lacagnina, V ;
Pecorella, A .
OPERATIONS RESEARCH, 2001, 49 (03) :423-429
[10]  
Guerriero F., 2000, 996 PARCOLAB U CAL D