DECODING ALGEBRAIC GEOMETRIC CODES UP TO THE DESIGNED MINIMUM DISTANCE

被引:132
作者
FENG, GL
RAO, TRN
机构
[1] Center for Advanced Computer Studies, University of Southwestern Louisiana, Lafayette, LA
关键词
ERROR-CORRECTING CODES; ALGEBRAIC GEOMETRIC CODES; DECODING PROCEDURE; CORRECTING [(D-ASTERISK-1)/2] ERRORS;
D O I
10.1109/18.179340
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A simple decoding procedure for algebraic-geometric codes C(OMEGA)(D, G) is presented. This decoding procedure is a generalization of Peterson's decoding procedure for the BCH codes. It can be used to correct any right perpendicular (d* - 1)/2 left perpendicular or fewer errors with complexity O(n3), where d* is the designed minimum distance of the algebraic-geometric code and n is the codelength.
引用
收藏
页码:37 / 45
页数:9
相关论文
共 16 条
  • [1] ELLIPTIC CODES OVER FIELDS OF CHARACTERISTIC-2
    DRIENCOURT, Y
    MICHON, JF
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 1987, 45 (01) : 15 - 39
  • [2] DRIENCOURT Y, 1985, 3RD P INT C AAECC 3, P185
  • [3] A GENERALIZATION OF THE BERLEKAMP-MASSEY ALGORITHM FOR MULTISEQUENCE SHIFT-REGISTER SYNTHESIS WITH APPLICATIONS TO DECODING CYCLIC CODES
    FENG, GL
    TZENG, KK
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (05) : 1274 - 1287
  • [4] HARARI S, 1986, OCT IEEE INT S INF T
  • [5] HENSEN JP, 1987, IEEE T INFORM THEORY, V33, P919
  • [6] FAST DECODING OF CODES FROM ALGEBRAIC PLANE-CURVES
    JUSTESEN, J
    LARSEN, KJ
    JENSEN, HE
    HOHOLDT, T
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (01) : 111 - 119
  • [7] CONSTRUCTION AND DECODING OF A CLASS OF ALGEBRAIC-GEOMETRY CODES
    JUSTESEN, J
    LARSEN, KJ
    JENSEN, HE
    HAVEMOSE, A
    HOHOLDT, T
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1989, 35 (04) : 811 - 821
  • [8] Katsman G. L., 1984, IEEE Transactions on Information Theory, VIT-30, P353, DOI 10.1109/TIT.1984.1056879
  • [9] Macwilliams F. J., 1977, THEORY ERROR CORRECT
  • [10] ON A DECODING ALGORITHM FOR CODES ON MAXIMAL CURVES
    PELLIKAAN, R
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1989, 35 (06) : 1228 - 1232