FAST ALGORITHMS FOR BIT-SERIAL ROUTING ON A HYPERCUBE

被引:16
作者
AIELLO, WA
LEIGHTON, FT
MAGGS, BM
NEWMAN, M
机构
[1] MIT,DEPT MATH,CAMBRIDGE,MA 02139
[2] MIT,DEPT COMP SCI,CAMBRIDGE,MA 02139
[3] NEC RES INST,PRINCETON,NJ 08540
[4] TEMPLE BARKER & SLOANE INC,LEXINGTON,MA 02173
来源
MATHEMATICAL SYSTEMS THEORY | 1991年 / 24卷 / 04期
关键词
D O I
10.1007/BF02090402
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we describe an 0(log N)-bit-step randomized algorithm for bit-serial message routing on a hypercube. The result is asymptotically optimal, and improves upon the best previously known algorithms by a logarithmic factor. The result also solves the problem of on-line circuit switching in an 0(1)-dilated hypercube (i.e., the problem of establishing edge-disjoint paths between the nodes of the dilated hypercube for any one-to-one mapping). Our algorithm is adaptive and we show that this is necessary to achieve the logarithmic speedup. We generalize the Borodin-Hopcroft lower bound on oblivious routing by proving that any randomized oblivious algorithm on a polylogarithmic degree network requires at least OMEGA(log2 N/log log N) bit steps with high probability for almost all permutations.
引用
收藏
页码:253 / 271
页数:19
相关论文
共 27 条
[1]  
AIELLO W, 1991, 3RD P ANN ACM S PAR
[2]   SORTING IN C LOG N PARALLEL STEPS [J].
AJTAI, M ;
KOMLOS, J ;
SZEMEREDI, E .
COMBINATORICA, 1983, 3 (01) :1-19
[3]  
ALELIUNAS R, 1982, 1ST P S PRINC DISTR, P60
[4]  
[Anonymous], J ACM
[5]  
ARORA S, 1990, 22ND P ANN ACM S THE, P149
[6]  
BENES VE, 1965, MATH THEORY CONNECTI
[7]   ROUTING, MERGING, AND SORTING ON PARALLEL MODELS OF COMPUTATION [J].
BORODIN, A ;
HOPCROFT, JE .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1985, 30 (01) :130-145
[8]  
CYPHER R, 1989, THESIS U WASHINGTON
[9]  
CYPHER RE, UNPUB TECHNIQUES SHA
[10]  
DALLY WJ, 1987, IEEE T COMPUT, V36, P547, DOI 10.1109/TC.1987.1676939