Asymptotic behavior of the drift-diffusion semiconductor equations

被引:19
作者
Fang, WF [1 ]
Ito, K [1 ]
机构
[1] N CAROLINA STATE UNIV,DEPT MATH,RALEIGH,NC 27695
关键词
D O I
10.1006/jdeq.1995.1173
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we continue our study on the asymptotic behavior of the drift-diffusion model for semiconductor devices. We assume the mobilities are constants, and show in this case the dynamical system has a compact, connected, maximal attractor that attracts sets that are bounded in terms of the L(infinity) norm. We then prove the differentiability of the semigroup defined by the solution map, and give an upper bound for the Hausdorff dimension of the attractor. (C) 1995 Academic Press, Inc
引用
收藏
页码:567 / 587
页数:21
相关论文
共 15 条
[1]  
Babin AV., 1992, ATTRACTORS EVOLUTION
[2]  
COURANT R, 1953, METHODS MATH PHYSICS
[3]  
FANG W, IN PRESS APPL MATH O
[4]   Global solutions of the time-dependent drift-diffusion semiconductor equations [J].
Fang, WF ;
Ito, K .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 123 (02) :523-566
[5]   ON EXISTENCE, UNIQUENESS AND ASYMPTOTIC-BEHAVIOR OF SOLUTIONS OF THE BASIC EQUATIONS FOR CARRIER TRANSPORT IN SEMICONDUCTORS [J].
GAJEWSKI, H .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1985, 65 (02) :101-108
[6]   ON THE BASIC EQUATIONS FOR CARRIER TRANSPORT IN SEMICONDUCTORS [J].
GAJEWSKI, H ;
GROGER, K .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1986, 113 (01) :12-35
[7]  
Gilbarg D., 1983, ELLIPTIC PARTIAL DIF
[8]  
Grisvard P., 1985, ELLIPTIC PROBLEMS NO
[9]  
HALE J. K, 1988, MATH SURVEYS MONOGRA
[10]  
Ladyzhenskaya O. A., 1968, LINEAR QUASILINEAR E