THE BIDIMENSIONAL STEFAN PROBLEM WITH CONVECTION - THE TIME-DEPENDENT CASE

被引:17
作者
CANNON, JR
DIBENEDETTO, E
KNIGHTLY, GH
机构
[1] WASHINGTON STATE UNIV,PULLMAN,WA 99164
[2] INDIANA UNIV,BLOOMINGTON,IN 47405
[3] UNIV MASSACHUSETTS,AMHERST,MA 01003
关键词
D O I
10.1080/03605308308820315
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:1549 / 1604
页数:56
相关论文
共 21 条
[1]   LOCAL BEHAVIOR OF SOLUTIONS OF QUASILINEAR PARABOLIC EQUATIONS [J].
ARONSON, DG ;
SERRIN, J .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1967, 25 (02) :81-&
[2]  
BONA JL, UNPUB REMARK INTERIO
[3]  
Boussinesq J, 1903, THEORIE ANAL CHALEUR, V2
[4]   QUASILINEAR PARABOLIC SYSTEMS [J].
CANNON, JR ;
FORD, WT ;
LAIR, AV .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1976, 20 (02) :441-472
[5]   ON THE EXISTENCE OF WEAK-SOLUTIONS TO AN N-DIMENSIONAL STEFAN PROBLEM WITH NON-LINEAR BOUNDARY-CONDITIONS [J].
CANNON, JR ;
DIBENEDETTO, E .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1980, 11 (04) :632-645
[6]   THE STEADY-STATE STEFAN PROBLEM WITH CONVECTION [J].
CANNON, JR ;
DIBENEDETTO, E ;
KNIGHTLY, GH .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1980, 73 (01) :79-97
[7]  
CANNON JR, 1979, MATH RES, V1, P35
[8]  
CANNON JR, 1980, FREE BOUNDARY PROBLE, V1, P231
[9]  
COURANT R, 1962, METHODS MATH PHYSICS, V1
[10]   CONTINUITY OF WEAK SOLUTIONS TO CERTAIN SINGULAR PARABOLIC EQUATIONS [J].
DIBENEDETTO, E .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1982, 130 :131-176