The lightlike geometry of marginally trapped surfaces in Minkowski space-time

被引:6
|
作者
Honda, Atsufumi [1 ]
Izumiya, Shyuichi [2 ]
机构
[1] Natl Inst Technol, Miyakonojo Coll, Miyakonojo 8858567, Japan
[2] Hokkaido Univ, Dept Math, Sapporo, Hokkaido 0600810, Japan
关键词
Lightlike geometry; Minkowski space-time; variational problems; marginally trapped surface;
D O I
10.1007/s00022-015-0266-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The lightlike geometry of codimension two spacelike submanifolds in Lorentz-Minkowski space has been developed by Izumiya and Romero Fuster (Selecta Math (N.S.) 13:23-55, 2007) which is a natural Lorentzian analogue of the classical Euclidean differential geometry of hypersurfaces. In this paper we investigate a special class of surfaces (i.e., marginally trapped surfaces) in Minkowski space-time from the view point of the lightlike geometry.
引用
收藏
页码:185 / 210
页数:26
相关论文
共 50 条
  • [31] Lightlike flat geometry of spacelike submanifolds in Lorentz-Minkowski space
    Izumiya, Shyuichi
    Kasedou, Masaki
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2014, 11 (05)
  • [32] From noncommutative κ-Minkowski to Minkowski space-time
    Freidel, Laurent
    Kowalski-Glikman, Jerzy
    Nowak, Sebastian
    PHYSICS LETTERS B, 2007, 648 (01) : 70 - 75
  • [33] The lightlike flat geometry on spacelike submanifolds of codimension two in Minkowski space
    Shyuichi Izumiya
    María del Carmen Romero Fuster
    Selecta Mathematica, 2007, 13
  • [34] The stability of Minkowski space-time
    Christodoulou, D
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1999, : 365 - 385
  • [35] The Minkowski's space-time is consistent with differential geometry of fractional order
    Jumarie, Guy
    PHYSICS LETTERS A, 2007, 363 (1-2) : 5 - 11
  • [36] Persistence in Minkowski Space-Time
    Friebe, Cord
    EPSA PHILOSOPHY OF SCIENCE: AMSTERDAM 2009, 2012, : 67 - 75
  • [37] Renormalization in Minkowski space-time
    Steib, Imola
    Nagy, Sandor
    Polonyi, Janos
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2021, 36 (05):
  • [38] Electrodynamics on κ-Minkowski space-time
    Harikumar, E.
    Juric, T.
    Meljanac, S.
    PHYSICAL REVIEW D, 2011, 84 (08):
  • [39] Reconstructing Minkowski space-time
    Solodukhin, SN
    ADS/CFT CORRESPONDENCE: EINSTEIN METRICS AND THEIR CONFORMAL BOUNDARIES, 2005, 8 : 123 - 163
  • [40] On parametrizations of loxodromes on time-like rotational surfaces in Minkowski space-time
    Babaarslan, Murat
    Gumus, Murat
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2021, 14 (05)