HAMMERSLEYS INTERACTING PARTICLE PROCESS AND LONGEST INCREASING SUBSEQUENCES

被引:129
作者
ALDOUS, D [1 ]
DIACONIS, P [1 ]
机构
[1] HARVARD UNIV,DEPT MATH,CAMBRIDGE,MA 02138
关键词
Mathematics Subject Classification (1979): 60C05; 60K35;
D O I
10.1007/BF01204214
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In a famous paper [8] Hammersley investigated the length L(n) of the longest increasing subsequence of a random n-permutation. Implicit in that paper is a certain one-dimensional continuous-space interacting particle process. By studying a hydrodynamical limit for Hammersley's process we show by fairly ''soft'' arguments that lim n(-1/2)EL(n) = 2. This is a known result, but previous proofs [14, 11] relied on hard analysis of combinatorial asymptotics.
引用
收藏
页码:199 / 213
页数:15
相关论文
共 14 条
  • [1] ALDOUS DJ, UNPUB PATIENCE SORTI
  • [2] [Anonymous], 1985, INTERACTING PARTICLE
  • [3] BOLLOBAS B, 1995, IN PRESS COMBINATORI, V4
  • [4] Bollobas Bela, 1992, ANN APPL PROBAB, P1009
  • [5] Diaconis P., 1988, GROUP REPRESENTATION
  • [6] Durrett R, 1991, PROBABILITY THEORY E
  • [7] HAMMERSLEY JM, 1972, 6TH P BERK S MATH ST, V1, P345
  • [8] KESTEN H, 1985, CONT MATH, V41, P235
  • [9] VARIATIONAL PROBLEM FOR RANDOM YOUNG TABLEAUX
    LOGAN, BF
    SHEPP, LA
    [J]. ADVANCES IN MATHEMATICS, 1977, 26 (02) : 206 - 222
  • [10] NON-EQUILIBRIUM BEHAVIOR OF A MANY-PARTICLE PROCESS - DENSITY PROFILE AND LOCAL EQUILIBRIA
    ROST, H
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1981, 58 (01): : 41 - 53