NONPERTURBATIVE APPROXIMATIONS OF PATH-INTEGRALS WITH SOME APPLICATIONS TO QUANTUM STATISTICS

被引:0
作者
MAGALINSKY, VB
HAYASHI, M
PENA, GM
SANCHEZ, RR
机构
[1] RUSSIAN FRIENDSHIP UNIV,DEPT THEORET PHYS,MOSCOW 117419,RUSSIA
[2] TOKYO UNIV PHARM & LIFE SCI,DEPT PHYS,HACHIOJI,TOKYO 19203,JAPAN
来源
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS | 1994年 / 109卷 / 10期
关键词
D O I
10.1007/BF02723229
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Some methods for constructing uniform non-perturbative approximations of path integrals over a conditional Wiener measure are examined. The relation of these methods and the results obtained with their help to the ones known in the literature is established. The concrete analytical procedures and the formulae for the corresponding approximations are constructed and some applications in quantum statistical mechanics are considered.
引用
收藏
页码:1049 / 1064
页数:16
相关论文
共 44 条
  • [1] BAGROV VG, 1980, TEOR MAT FIZ, V50, P390
  • [2] BEYLINSON AA, 1979, FUNCTIONAL INTEGRALS
  • [3] Binder K., 1979, MONTECARLO METHODS S
  • [4] CAO J, 1989, J CHEM PHYS, V92, P7531
  • [5] DEGENNES PG, 1972, SCALING CONCEPTS POL
  • [6] Doi M., 1986, THEORY POLYM DYNAMIC
  • [7] THE SIZE OF A POLYMER IN RANDOM-MEDIA
    EDWARDS, SF
    MUTHUKUMAR, M
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1988, 89 (04) : 2435 - 2441
  • [8] ERDEYI A, 1953, HIGHER TRANSCENDENTA, V1
  • [9] EFFECTIVE CLASSICAL PARTITION-FUNCTIONS
    FEYNMAN, RP
    KLEINERT, H
    [J]. PHYSICAL REVIEW A, 1986, 34 (06): : 5080 - 5084
  • [10] FEYNMAN RP, 1972, STATISTICAL MECHANIC