ESTIMATION OF SYSTEM RELIABILITY IN BROWNIAN STRESS-STRENGTH MODELS BASED ON SAMPLE PATHS

被引:15
作者
EBRAHIMI, N [1 ]
RAMALLINGAM, T [1 ]
机构
[1] NO ILLINOIS UNIV,STAT CONSULTING LAB,DE KALB,IL 60115
关键词
STRESS-STRENGTH MODEL; STOPPED PROCESS; MAXIMUM LIKELIHOOD ESTIMATOR; BINARY PERFORMANCE PROCESS; BROWNIAN MOTION; HOMOGENEOUS MARKOV PROCESS; NONHOMOGENEOUS MARKOV PROCESS; 1ST PASSAGE TIME; INVERSE GAUSSIAN DISTRIBUTION;
D O I
10.1007/BF00773665
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Reliability of many stochastic systems depends on uncertain stress and strength patterns that are time dependent. In this paper, we consider the problem of estimating the reliability of a system when both X(t) and Y(t) are assumed to be independent Brownian motion processes, where X(t) is the system stress, and Y(t) is the system strength, at time t.
引用
收藏
页码:9 / 19
页数:11
相关论文
共 14 条
[1]  
Apostol T. M., 1973, MATH ANAL
[2]  
Basu A.P., 1983, STAT PROBABILITY LET, V1, P265
[3]  
CINLAR E, 1979, STOCHASTIC PROCESS A, V6, P147
[4]  
EBRAHIMI N, 1982, IEEE T RELIAB, V31, P202, DOI 10.1109/TR.1982.5221301
[5]  
Harrison Michael J., 1985, BROWNIAN MOTION STOC
[6]   ARE WE REALLY ALL ALLIANCE NOWADAYS - DISCRIMINATING BY DISCRIMINANT-ANALYSIS [J].
JOHNSTON, RJ ;
PATTIE, CJ .
ELECTORAL STUDIES, 1988, 7 (01) :27-32
[7]  
KARLIN S, 1975, 1ST COURSE STOCHASTI
[8]  
Kutoyants YA, 1984, PARAMETER ESTIMATION
[9]  
Lehmann EH., 1983, THEORY POINT ESTIMAT
[10]   ON THE EXISTENCE AND UNIQUENESS OF THE MAXIMUM-LIKELIHOOD ESTIMATE OF A VECTOR-VALUED PARAMETER IN FIXED-SIZE SAMPLES [J].
MAKELAINEN, T ;
SCHMIDT, K ;
STYAN, GPH .
ANNALS OF STATISTICS, 1981, 9 (04) :758-767