Distributed Widely Linear Kalman Filtering for Frequency Estimation in Power Networks

被引:51
|
作者
Kanna, Sithan [1 ]
Dini, Dahir H. [1 ]
Xia, Yili [2 ]
Hui, S. Y. [3 ,4 ]
Mandic, Danilo P. [1 ]
机构
[1] Imperial Coll London, Dept Elect & Elect Engn, London SW7 2AZ, England
[2] Southeast Univ, Sch Infirmat Sci & Engn, Nanjing 210096, Peoples R China
[3] Univ Hong Kong, Hong Kong, Peoples R China
[4] Imperial Coll London, London SW7 2AZ, England
来源
IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS | 2015年 / 1卷 / 01期
关键词
Terms-Adaptive networks; frequency estimation; Kalman filters; sensor fusion; smart grid;
D O I
10.1109/TSIPN.2015.2442834
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Motivated by the growing need for robust and accurate frequency estimators at the low- and medium-voltage distribution levels and the emergence of ubiquitous sensors networks for the smart grid, we introduce a distributed Kalman filtering scheme for frequency estimation. This is achieved by using widely linear state space models, which are capable of estimating the frequency under both balanced and unbalanced operating conditions. The proposed distributed augmented extended Kalman filter (D-ACEKF) exploits multiple measurements without imposing any constraints on the operating conditions at different parts of the network, while also accounting for the correlated and non-circular natures of real-world nodal disturbances. Case studies over a range of power system conditions illustrate the theoretical and practical advantages of the proposed methodology.
引用
收藏
页码:45 / 57
页数:13
相关论文
共 50 条
  • [41] On vulnerability of Kalman filtering with holistic estimation performance loss
    Zhou, Jing
    Shang, Jun
    Chen, Tongwen
    AUTOMATICA, 2025, 171
  • [42] Iterative Noise Estimation-Based Cubature Kalman Filtering for Distributed POS in Aerial Earth Observation Imaging
    Ye, Wen
    Cheng, Junchao
    Chen, Linzhouting
    Liu, Yanhong
    Wang, Bo
    Hu, Ruo
    IEEE SENSORS JOURNAL, 2021, 21 (24) : 27718 - 27727
  • [43] Distributed Kalman filtering for Time-Space Gaussian Processes
    Todescato, M.
    Dalla Libera, A.
    Carli, R.
    Pillonetto, G.
    Schenato, L.
    IFAC PAPERSONLINE, 2017, 50 (01): : 13234 - 13239
  • [44] Dynamic Synchrophasor Estimation using Smoothed Kalman Filtering
    Fontanelli, Daniele
    Macii, David
    Petri, Dario
    2016 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE PROCEEDINGS, 2016, : 768 - 773
  • [45] Distributed Kalman estimation with decoupled local filters
    Marelli, Damian
    Sui, Tianju
    Fu, Minyue
    AUTOMATICA, 2021, 130
  • [46] Power Systems Dynamic State Estimation With the Two-Step Fault Tolerant Extended Kalman Filtering
    Wang, Xin
    IEEE ACCESS, 2021, 9 : 137211 - 137223
  • [47] Frequency estimation of distorted power system signals using extended complex Kalman filters
    Dash, PK
    Pradhan, AK
    Panda, G
    IEEE TRANSACTIONS ON POWER DELIVERY, 1999, 14 (03) : 761 - 766
  • [48] Assessment of Power Frequency Estimation Methods in Distributed Generation in Islanding Condition
    Sanca, Huilman S.
    Campos, Joao T. L. S.
    Souza Jr, Francisco C.
    Costa, Flavio B.
    de Souza, Benemar A.
    PRZEGLAD ELEKTROTECHNICZNY, 2018, 94 (05): : 1 - 6
  • [49] Distributed Estimation on Sensor Networks With Measurement Uncertainties
    Knotek, Stefan
    Hengster-Movric, Kristian
    Sebek, Michael
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2021, 29 (05) : 1997 - 2011
  • [50] New Kalman Filter Approach Exploiting Frequency Knowledge for Accurate PMU-Based Power System State Estimation
    Muscas, Carlo
    Pegoraro, Paolo Attilio
    Sulis, Sara
    Pau, Marco
    Ponci, Ferdinanda
    Monti, Antonello
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2020, 69 (09) : 6713 - 6722