PROPERTIES OF PEAK SETS IN WEAKLY PSEUDOCONVEX BOUNDARIES IN C2

被引:11
作者
NOELL, AV
机构
关键词
D O I
10.1007/BF01215494
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:99 / 116
页数:18
相关论文
共 50 条
[31]   Pseudoconcave pluripolar sets in C2 [J].
Levenberg, N ;
Slodkowski, Z .
MATHEMATISCHE ANNALEN, 1998, 312 (03) :429-443
[32]   APPROXIMATION ON THIN SETS IN C2 [J].
KASTEN, V ;
SCHMIEDER, G .
MATHEMATISCHE ZEITSCHRIFT, 1981, 178 (03) :375-379
[33]   SOBOLEV ESTIMATES FOR THE COMPLEX GREEN OPERATOR ON A CLASS OF WEAKLY PSEUDOCONVEX BOUNDARIES [J].
BOAS, HP ;
STRAUBE, EJ .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1991, 16 (10) :1573-1582
[34]   BOUNDED STRICTLY PSEUDOCONVEX DOMAINS IN C2 WITH OBSTRUCTION FLAT BOUNDARY [J].
Curry, Sean N. ;
Ebenfelt, Peter .
AMERICAN JOURNAL OF MATHEMATICS, 2021, 143 (01) :265-306
[35]   EXTENDING Hp FUNCTIONS FROM SUBMANIFOLDS OF PSEUDOCONVEX DOMAINS IN C2 [J].
Cho, Hong Rae ;
Seo, Yeoung-Tae .
KYUSHU JOURNAL OF MATHEMATICS, 2010, 64 (02) :215-220
[36]   Pseudoconvex domains in C2 with convexifiable boundary around an extremal disk [J].
Pang, MY .
MATHEMATISCHE ZEITSCHRIFT, 1997, 226 (04) :513-532
[37]   THE SZEGo KERNEL FOR CERTAIN NON-PSEUDOCONVEX DOMAINS IN C2 [J].
Gilliam, Michael ;
Halfpap, Jennifer .
ILLINOIS JOURNAL OF MATHEMATICS, 2011, 55 (03) :871-894
[38]   Compact and subelliptic estimates for the δ--Neumann operator on C2 pseudoconvex domains [J].
Harrington, Phillip S. .
MATHEMATISCHE ANNALEN, 2007, 337 (02) :335-352
[39]   On boundary accumulation points of a smoothly bounded pseudoconvex domain in C2 [J].
Fu, S ;
Wong, B .
MATHEMATISCHE ANNALEN, 1998, 310 (01) :181-194
[40]   ZERO SETS AND PEAK SETS FOR SOME CLASSES OF FUNCTIONS HOLOMORPHIC IN A STRICTLY PSEUDOCONVEX DOMAIN [J].
ABABOUBOUMAAZ, R .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1986, 302 (14) :507-510