Shape Preserving Properties for q-Bernstein-Stancu Operators

被引:2
|
作者
Wang, Yali [1 ]
Zhou, Yinying [1 ]
机构
[1] Langfang Teachers Coll, Sch Math & Informat Sci, Liangfang 065000, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1155/2014/603694
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate shape preserving for q-Bernstein-Stancu polynomials B-n(q,alpha)(f; x) introduced by Nowak in 2009. When alpha= 0, B-n(q,alpha)(f; x) reduces to the well- known q-Bernstein polynomials introduced by Phillips in 1997; when q = 1, B-n(q,alpha)(f;x) reduces to Bernstein-Stancu polynomials introduced by Stancu in 1968; when q = 1, alpha = 0, we obtain classical Bernstein polynomials. We prove that basic B-n(q,alpha)(f; x) basis is a normalized totally positive basis on [0, 1] and q-Bernstein-Stancu operators are variationdiminishing, monotonicity preserving and convexity preserving on [0, 1].
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Chlodowsky variant of q-Bernstein-Schurer-Stancu operators
    Vedi, Tuba
    Ozarslan, Mehmet Ali
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [22] Stancu type q-Bernstein operators with shifted knots
    M. Mursaleen
    Mohd Qasim
    Asif Khan
    Zaheer Abbas
    Journal of Inequalities and Applications, 2020
  • [23] Shape preserving properties of univariate Lototsky-Bernstein operators
    Xu, Xiao-Wei
    Zeng, Xiao-Ming
    Goldman, Ron
    JOURNAL OF APPROXIMATION THEORY, 2017, 224 : 13 - 42
  • [24] Stancu type q-Bernstein operators with shifted knots
    Mursaleen, M.
    Qasim, Mohd
    Khan, Asif
    Abbas, Zaheer
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [25] Approximation properties of Kantorovich-type q-Bernstein-Stancu-Schurer operators
    Cai, Qing-Bo
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 23 (05) : 847 - 859
  • [26] BERNSTEIN-STANCU OPERATORS
    Cleciu, Voichita Adriana
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2007, 52 (04): : 53 - 65
  • [27] Approximation Properties of λ-Bernstein-Kantorovich-Stancu Operators
    Bodur, Murat
    Manav, Nesibe
    Tasdelen, Fatma
    MATHEMATICA SLOVACA, 2022, 72 (01) : 141 - 152
  • [28] Shape-preserving properties of ω, q-Bernstein polynomials
    Wang, Heping
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (04) : 957 - 967
  • [29] Statistical approximation properties of Stancu type λ-Bernstein operators
    Wang, Peng-Hui
    Cai, Qing-Bo
    PROCEEDINGS OF 2019 IEEE 2ND INTERNATIONAL CONFERENCE ON ELECTRONIC INFORMATION AND COMMUNICATION TECHNOLOGY (ICEICT 2019), 2019, : 178 - 182
  • [30] Statistical Approximation by (p, q)-analogue of Bernstein-Stancu Operators
    Khan, A.
    Sharma, V
    AZERBAIJAN JOURNAL OF MATHEMATICS, 2018, 8 (02): : 100 - 121