Shape Preserving Properties for q-Bernstein-Stancu Operators

被引:2
|
作者
Wang, Yali [1 ]
Zhou, Yinying [1 ]
机构
[1] Langfang Teachers Coll, Sch Math & Informat Sci, Liangfang 065000, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1155/2014/603694
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate shape preserving for q-Bernstein-Stancu polynomials B-n(q,alpha)(f; x) introduced by Nowak in 2009. When alpha= 0, B-n(q,alpha)(f; x) reduces to the well- known q-Bernstein polynomials introduced by Phillips in 1997; when q = 1, B-n(q,alpha)(f;x) reduces to Bernstein-Stancu polynomials introduced by Stancu in 1968; when q = 1, alpha = 0, we obtain classical Bernstein polynomials. We prove that basic B-n(q,alpha)(f; x) basis is a normalized totally positive basis on [0, 1] and q-Bernstein-Stancu operators are variationdiminishing, monotonicity preserving and convexity preserving on [0, 1].
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Kantorovich type q-Bernstein-Stancu operators
    Erencin, Aysegul
    Bascanbaz-Tunca, Gulen
    Tasdelen, Fatma
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2012, 57 (01): : 89 - 105
  • [2] Approximation by Kantorovich Type q-Bernstein-Stancu Operators
    M. Mursaleen
    Khursheed J. Ansari
    Asif Khan
    Complex Analysis and Operator Theory, 2017, 11 : 85 - 107
  • [3] Approximation by Kantorovich Type q-Bernstein-Stancu Operators
    Mursaleen, M.
    Ansari, Khursheed J.
    Khan, Asif
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2017, 11 (01) : 85 - 107
  • [4] Some statistical approximation properties of Kantorovich-type q-Bernstein-Stancu operators
    Ren, Mei-Ying
    Zeng, Xiao-Ming
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [5] Some statistical approximation properties of Kantorovich-type q-Bernstein-Stancu operators
    Mei-Ying Ren
    Xiao-Ming Zeng
    Journal of Inequalities and Applications, 2014
  • [6] THE RATE OF CONVERGENCE OF q-BERNSTEIN-STANCU POLYNOMIALS
    Jiang, Yanjie
    Li, Junming
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2009, 7 (06) : 773 - 779
  • [7] On Approximation of Linear Gain Equalizer by q-Bernstein-Stancu Operators and Mobius Transformation
    Chutchavong, V.
    Dokyam, T.
    Janchitrapongvej, K.
    Benjangkaprasert, C.
    2018 15TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING/ELECTRONICS, COMPUTER, TELECOMMUNICATIONS AND INFORMATION TECHNOLOGY (ECTI-CON), 2018, : 493 - 496
  • [8] A de Casteljau Algorithm for q-Bernstein-Stancu Polynomials
    Nowak, Grzegorz
    ABSTRACT AND APPLIED ANALYSIS, 2011,
  • [9] On the shape-preserving properties of λ-Bernstein operators
    Su, Lian-Ta
    Mutlu, Gokhan
    Cekim, Bayram
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2022, 2022 (01)
  • [10] On the shape-preserving properties of λ-Bernstein operators
    Lian-Ta Su
    Gökhan Mutlu
    Bayram Çekim
    Journal of Inequalities and Applications, 2022