Time-dependent quantum graph

被引:13
作者
Matrasulov, D. U. [1 ,2 ]
Yusupov, J. R. [1 ]
Sabirov, K. K. [2 ]
Sobirov, Z. A. [2 ,3 ]
机构
[1] Turin Polytech Univ Tashkent, 17 Niyazov Str, Tashkent 100095, Uzbekistan
[2] Natl Univ Uzbekistan, Tashkent 100174, Uzbekistan
[3] Tashkent Financial Inst, Tashkent 100000, Uzbekistan
来源
NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS | 2015年 / 6卷 / 02期
关键词
quantum graph; time-dependent boundary conditions; wave packet dynamics;
D O I
10.17586/2220-8054-2015-6-2-173-181
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this paper, we study quantum star graphs with time-dependent bond lengths. Quantum dynamics are treated by solving Schrodinger equation with time-dependent boundary conditions given on graphs. The time-dependence of the average kinetic energy is analyzed. The space-time evolution of a Gaussian wave packet is treated for an harmonically breathing star graph.
引用
收藏
页码:173 / 181
页数:9
相关论文
共 27 条
[1]   Symmetries of quantum graphs and the inverse scattering problem [J].
Boman, J ;
Kurasov, P .
ADVANCES IN APPLIED MATHEMATICS, 2005, 35 (01) :58-70
[2]   Approximation of a general singular vertex coupling in quantum graphs [J].
Cheon, Taksu ;
Exner, Pavel ;
Turek, Ondrej .
ANNALS OF PHYSICS, 2010, 325 (03) :548-578
[3]   INFINITE SQUARE-WELL POTENTIAL WITH A MOVING WALL [J].
DOESCHER, SW ;
RICE, MH .
AMERICAN JOURNAL OF PHYSICS, 1969, 37 (12) :1246-&
[4]   QUANTUM INTERFERENCE ON GRAPHS CONTROLLED BY AN EXTERNAL ELECTRIC-FIELD [J].
EXNER, P ;
SEBA, P ;
STOVICEK, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (21) :4009-4019
[5]  
Exner P., 1989, Reports on Mathematical Physics, V28, P7, DOI 10.1016/0034-4877(89)90023-2
[6]   Quantum infinite square well with an oscillating wall [J].
Glasser, M. L. ;
Mateo, J. ;
Negro, J. ;
Nieto, L. M. .
CHAOS SOLITONS & FRACTALS, 2009, 41 (04) :2067-2074
[7]   Eigenfunction statistics on quantum graphs [J].
Gnutzmann, S. ;
Keating, J. P. ;
Piotet, F. .
ANNALS OF PHYSICS, 2010, 325 (12) :2595-2640
[8]   Quantum graphs: Applications to quantum chaos and universal spectral statistics [J].
Gnutzmann, Sven ;
Smilansky, Uzy .
ADVANCES IN PHYSICS, 2006, 55 (5-6) :527-625
[9]   Experimental simulation of quantum graphs by microwave networks [J].
Hul, O ;
Bauch, S ;
Pakonski, P ;
Savytskyy, N ;
Zyczkowski, K ;
Sirko, L .
PHYSICAL REVIEW E, 2004, 69 (05) :7-1
[10]   STUDY OF A QUANTUM FERMI-ACCELERATION MODEL [J].
JOSE, JV ;
CORDERY, R .
PHYSICAL REVIEW LETTERS, 1986, 56 (04) :290-293