Taguchi-Particle Swarm Optimization for Numerical Optimization

被引:0
作者
Ting, T. O. [1 ]
Ting, H. C. [2 ]
Lee, T. S. [3 ]
机构
[1] HKU Space Global Coll, Dept Informat Technol, Suzhou, Peoples R China
[2] Tunku Abdul Rahman Coll, Div Comp Sci, Setapak, Malaysia
[3] Multimedia Univ, Cyberjaya, Malaysia
关键词
Hybrid Algorithm; Numerical Optimization; Particle Swarm Optimization; PSO Iteration; Taguchi;
D O I
10.4018/jsir.2010040102
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, a hybrid Taguchi-Particle Swarm Optimization (TPSO) is proposed to solve global numerical optimization problems with continuous and discrete variables. This hybrid algorithm combines the well-known Particle Swarm Optimization Algorithm with the established Taguchi method, which has been an important tool for robust design. This paper presents the improvements obtained despite the simplicity of the hybridization process. The Taguchi method is run only once in every PSO iteration and therefore does not give significant impact in terms of computational cost. The method creates a more diversified population, which also contributes to the success of avoiding premature convergence. The proposed method is effectively applied to solve 13 benchmark problems. This study's results show drastic improvements in comparison with the standard PSO algorithm involving continuous and discrete variables on high dimensional benchmark functions.
引用
收藏
页码:18 / 33
页数:16
相关论文
共 23 条
[1]  
Baskar S, 2004, IEEE C EVOL COMPUTAT, P792
[2]   Locating multiple optima using particle swarm optimization [J].
Brits, R. ;
Engelbrecht, A. P. ;
van den Bergh, F. .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 189 (02) :1859-1883
[3]   The particle swarm - Explosion, stability, and convergence in a multidimensional complex space [J].
Clerc, M ;
Kennedy, J .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (01) :58-73
[4]   A hierarchical particle swarm optimizer and its adaptive variant [J].
Janson, S ;
Middendorf, M .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2005, 35 (06) :1272-1282
[5]  
Kennedy J, 1995, 1995 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS PROCEEDINGS, VOLS 1-6, P1942, DOI 10.1109/icnn.1995.488968
[6]  
Krink T., 2002, Parallel Problem Solving from Nature - PPSN VII. 7th International Conference. Proceedings (Lecture Notes in Computer Science Vol.2439), P621
[7]   An orthogonal genetic algorithm with quantization for global numerical optimization [J].
Leung, YW ;
Wang, YP .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2001, 5 (01) :41-53
[8]  
Liang J. J., IEEE T EVOLUTIONARY, V10, P281
[9]  
Liang JJ, 2005, 2005 IEEE SWARM INTELLIGENCE SYMPOSIUM, P124
[10]  
Niu B, 2005, LECT NOTES ARTIF INT, V3630, P874