Solving Nonlinear Integro-Differential Equations Using the Combined Homotopy Analysis Transform Method With Adomian Polynomials

被引:2
作者
Khanlari, Nahid [1 ]
Paripour, Mahmoud [2 ]
机构
[1] Islamic Azad Univ, Dept Math, Hamedan Branch, Hamadan 65138, Iran
[2] Hamedan Univ Technol, Dept Math, Hamadan 65156579, Iran
来源
COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS | 2018年 / 9卷 / 04期
关键词
Nonlinear integro-differential equations; Homotopy analysis method; Laplace transform method; Adomian polynomials;
D O I
10.26713/cma.v9i4.942
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we propose a reliable combination of the homotopy analysis method (HAM) and laplace transform-Adomian method to find the analytic approximate solution for nonlinear integro-differential equations. In this technique, the nonlinear term is replaced by its Adomian polynomials for the index k, and hence the dependent variable components are replaced in the recurrence relation by their corresponding homotopy analysis transforms components of the same index. Thus, the nonlinear integro-differential equation can be easily solved with less computational work for any analytic nonlinearity due to the properties and available algorithms of the Adomian polynomials. The results show that the method is very simple and effective.
引用
收藏
页码:637 / 650
页数:14
相关论文
共 35 条
[1]   Numerical solutions of the integral equations: Homotopy perturbation method and Adomian's decomposition method [J].
Abbasbandy, S .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 173 (01) :493-500
[2]   Numerical and analytical solutions for Falkner-Skan flow of MHD Oldroyd-B fluid [J].
Abbasbandy, S. ;
Hayat, T. ;
Alsaedi, A. ;
Rashidi, M. M. .
INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2014, 24 (02) :390-401
[3]   Numerical and analytical solutions for Falkner-Skan flow of MHD Maxwell fluid [J].
Abbasbandy, Saeid ;
Naz, Rahila ;
Hayat, Tasawar ;
Alsaedi, A. .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 242 :569-575
[4]  
Alotabi, 2016, GEN MATH NOTES, V32, P32
[5]  
Araghi MF., 2009, COMPUT METHOD APPL M, V9, P321, DOI 10.2478/cmam-2009-0020
[6]  
Awawdeh F., 2009, INT MATH FORUM, V4, P805
[7]  
Behiry S.H., 2013, AUST J BASIC APPL SC, V2, P209
[8]  
Bildik N, 2006, INT J NONLIN SCI NUM, V7, P65
[9]  
Borhanifar A., 2012, CAN J COMPUT MATH NA, V3, P1
[10]   A FAMILY OF METHODS FOR ABEL INTEGRAL-EQUATIONS OF THE 2ND KIND [J].
BRUNNER, H ;
CRISCI, MR ;
RUSSO, E ;
VECCHIO, A .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1991, 34 (02) :211-219