VARIABLE ORDER COMPOSITE QUADRATURE OF SINGULAR AND NEARLY SINGULAR-INTEGRALS

被引:64
作者
SCHWAB, C
机构
[1] Department of Mathematics and Statistics, University of Maryland, Baltimore, 21228-5398, Maryland, Baltimore County
关键词
SINGULAR INTEGRALS; NUMERICAL INTEGRATION; EXPONENTIAL CONVERGENCE;
D O I
10.1007/BF02252988
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A class of variable order composite quadrature formulas for the numerical integration of functions with a singularity in or near to the region of integration is introduced. Exponential convergence of the method is shown for all integrands in the countably normed space B-beta. Numerical examples are presented which demonstrate that the asymptotic exponential convergence rates obtained here are sharp and already observed for a small number of quadrature points.
引用
收藏
页码:173 / 194
页数:22
相关论文
共 15 条
[1]   REGULARITY OF THE SOLUTION OF ELLIPTIC PROBLEMS WITH PIECEWISE ANALYTIC DATA .1. BOUNDARY-VALUE PROBLEMS FOR LINEAR ELLIPTIC EQUATION OF 2ND ORDER [J].
BABUSKA, I ;
GUO, BQ .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1988, 19 (01) :172-203
[2]  
Bergh J., 1976, INTERPOLATION SPACES, V223
[3]   THE APPROXIMATION-THEORY FOR THE P-VERSION OF THE FINITE-ELEMENT METHOD [J].
DORR, MR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1984, 21 (06) :1180-1207
[4]  
GELFAND IM, 1964, GENERALIZED FUNCTION, V2
[5]  
Guo B, 1986, COMPUT MECH, V1, P21, DOI DOI 10.1007/BF00298636
[6]   ON NUMERICAL CUBATURES OF NEARLY SINGULAR SURFACE INTEGRALS ARISING IN BEM COLLOCATION [J].
HACKBUSCH, W ;
SAUTER, SA .
COMPUTING, 1994, 52 (02) :139-159
[7]   SOME NOTES ON SINGULAR INTEGRAL TECHNIQUES IN BOUNDARY-ELEMENT ANALYSIS [J].
HUANG, Q ;
CRUSE, TA .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1993, 36 (15) :2643-2659
[8]   NUMERICAL EVALUATION OF SINGULAR AND FINITE-PART INTEGRALS ON CURVED SURFACES USING SYMBOLIC MANIPULATION [J].
KIESER, R ;
SCHWAB, C ;
WENDLAND, WL .
COMPUTING, 1992, 49 (03) :279-301
[9]   QUADRATURE ERROR FUNCTIONAL EXPANSIONS FOR THE SIMPLEX WHEN THE INTEGRAND FUNCTION HAS SINGULARITIES AT VERTICES [J].
LYNESS, JN ;
MONEGATO, G .
MATHEMATICS OF COMPUTATION, 1980, 34 (149) :213-225
[10]  
SCHERER K, 1981, NUMER MATH, V36, P151, DOI 10.1007/BF01396756