THERMAL-DECOMPOSITION OF N-METHYLPYRROLE - EXPERIMENTAL AND MODELING STUDY

被引:15
|
作者
LIFSHITZ, A [1 ]
SHWEKY, I [1 ]
TAMBURU, C [1 ]
机构
[1] HEBREW UNIV JERUSALEM,DEPT PHYS CHEM,IL-91904 JERUSALEM,ISRAEL
关键词
D O I
10.1021/j100119a031
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The thermal decomposition of N-methylpyrrole was studied behind reflected shocks in a pressurized driver single pulse shock tube over the temperature range 1050-1300 K at overall densities of approximately 3 X 10(-5) mol/cm3. A large number of decomposition products with and without bound nitrogen were obtained under shock heating. High concentrations of isomerization (2- and 3-methylpyrrole) and six-membered ring compounds (pyridine) were also found. The main decomposition channel is initiated by a rupture of the N-CH3 bond with a rate constant of initiation k(init) = 10(16.26) exp(-79.5 X 10(3)/RT) s-1, where R is expressed in units of cal/(K mol). Abstraction reactions and recombination of methyl radicals lead to the production of a line of hydrocarbons such as CH4, C2H6, and C2H4. Abstraction of a hydrogen atom from the N-CH3 group leads to the production of C4H4N-CH2. which upon ring enlargement produces pyridine. Toluene was used as a free radical scavenger to distinguish between radical chains and unimolecular processes. Reaction products such as CH3CN are obtained by a unimolecular decomposition of the N-methylpyrrole ring. The total decomposition of N-methylpyrrole in terms of a first-order rate constant is given by k(total) = 10(16.7) exp(-79.2 X 10(3)/RT) s-1. First-order Arrhenius rate parameters for the formation of the various reaction products are given, a reaction scheme is suggested, and results of computer simulation and sensitivity analysis are shown. Differences and similarities in the reactions of pyrrole and N-methylpyrrole are discussed.
引用
收藏
页码:4442 / 4449
页数:8
相关论文
empty
未找到相关数据