LAGRANGE DESCRIPTION OF ONE-DIMENSIONAL TURBULENCE

被引:0
|
作者
ZHANABAEV, ZZ
机构
来源
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An approach is proposed for determining the spectral energy density of hydrodynamic turbulence, using the properties of two-dimensional vortex packet as a structural element of turbulence. The existence of three characteristic regularities E(k) is shown. For the long-range region the law E(k) infinity K2lambda1/2, involving the cluster structure of vortex, is found. For the scale-invariant and dissipative regions, the laws E(k) infinity k(Absolute value of beta) ln (k0/k) and E(k) infinity ln(k0/k) are obtained, respectively. The results of the theory are confirmed in the special experiment.
引用
收藏
页码:1825 / 1837
页数:13
相关论文
共 50 条
  • [41] LARGE EDDY SIMULATIONS OF ONE-DIMENSIONAL COMPRESSIBLE TURBULENCE
    FEIEREISEN, W
    REYNOLDS, WC
    FERZIGER, JH
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1978, 23 (08): : 989 - 989
  • [42] KINETIC-EQUATION OF ONE-DIMENSIONAL ACOUSTIC TURBULENCE
    RUDENKO, OV
    KHOKHLOVA, VA
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 3 FIZIKA ASTRONOMIYA, 1989, 30 (04): : 64 - 69
  • [43] STATISTICAL FORMULATION OF ONE-DIMENSIONAL ELECTRON FLUID TURBULENCE
    FYFE, D
    MONTGOMERY, D
    PHYSICS OF FLUIDS, 1978, 21 (03) : 316 - 326
  • [44] One-dimensional optical wave turbulence: Experiment and theory
    Laurie, Jason
    Bortolozzo, Umberto
    Nazarenko, Sergey
    Residori, Stefania
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2012, 514 (04): : 121 - 175
  • [46] One-dimensional model of freely decaying two-dimensional turbulence
    Leonardo Campanelli
    Journal of the Korean Physical Society, 2022, 80 : 972 - 980
  • [47] Description of the Attainable Sets of One-Dimensional Differential Inclusions
    Chalco-Cano, Yurilev
    de Oliveira, Valeriano A.
    Silva, Geraldo N.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2015, 164 (01) : 138 - 153
  • [48] An effective description of a periodic one-dimensional hopping model
    YunXin Zhang
    Science China Physics, Mechanics and Astronomy, 2011, 54 : 401 - 405
  • [49] Description of the Attainable Sets of One-Dimensional Differential Inclusions
    Yurilev Chalco-Cano
    Valeriano A. de Oliveira
    Geraldo N. Silva
    Journal of Optimization Theory and Applications, 2015, 164 : 138 - 153
  • [50] An effective description of a periodic one-dimensional hopping model
    Zhang YunXin
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2011, 54 (03) : 401 - 405