THE CMAC AND A THEOREM OF KOLMOGOROV

被引:26
|
作者
COTTER, NE
GUILLERM, TJ
机构
基金
美国国家科学基金会;
关键词
CMAC; KOLMOGOROV THEOREM; HASH TABLES; SPURIOUS ACTIVITY;
D O I
10.1016/S0893-6080(05)80021-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper shows that the Cerebellar Model Articulation Controller (CMAC) is structurally similar to networks derived from a theorem of Kolmogorov. As a foundation for this comparison, we review of a proof of Kolmogorov's theorem. From this proof and an analysis of the CMAC we derive two lemmas describing functions that cannot be modeled by a CMAC. The first lemma states that such functions have zero average value over response regions of CMAC association cells. The second lemma states that such functions have local oscillations exceeding a quantifiable percentage of the global maximum absolute value of error. This second lemma gives bounds on errors caused by hash tables used as association cells in the CMAC. We present three examples illustrating the lemmas.
引用
收藏
页码:221 / 228
页数:8
相关论文
共 50 条
  • [1] On the Kolmogorov theorem
    Kruglov V.M.
    Journal of Mathematical Sciences, 2001, 106 (2) : 2830 - 2834
  • [2] Kolmogorov theorem revisited
    Villanueva, Jordi
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 244 (09) : 2251 - 2276
  • [3] Towards feasible learning algorithm based on Kolmogorov theorem
    Neruda, R
    Stedry, A
    Drkosová, J
    IC-AI'2000: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 1-III, 2000, : 915 - 920
  • [4] On the Kolmogorov theorem for some infinite-dimensional Hamiltonian systems of short range
    Wu, Yuan
    Yuan, Xiaoping
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 202
  • [5] A Kolmogorov theorem for nearly integrable Poisson systems with asymptotically decaying time-dependent perturbation
    Alessandro Fortunati
    Stephen Wiggins
    Regular and Chaotic Dynamics, 2015, 20 : 476 - 485
  • [6] A Kolmogorov theorem for nearly integrable Poisson systems with asymptotically decaying time-dependent perturbation
    Fortunati, Alessandro
    Wiggins, Stephen
    REGULAR & CHAOTIC DYNAMICS, 2015, 20 (04) : 476 - 485
  • [7] An innovative architecture of CMAC
    Hwang, KS
    Hsu, YP
    IEICE TRANSACTIONS ON ELECTRONICS, 2004, E87C (01): : 81 - 93
  • [8] Learning convergence of CMAC algorithm
    He, C
    Xu, LX
    Zhang, YH
    NEURAL PROCESSING LETTERS, 2001, 14 (01) : 61 - 74
  • [9] Learning Convergence of CMAC Algorithm
    Chao He
    Lixin Xu
    Yuhe Zhang
    Neural Processing Letters, 2001, 14 : 61 - 74
  • [10] CMAC with general basis functions
    Chiang, CT
    Lin, CS
    NEURAL NETWORKS, 1996, 9 (07) : 1199 - 1211