Derived p-adic heights

被引:13
作者
Bertolini, M [1 ]
Darmon, H [1 ]
机构
[1] MCGILL UNIV,DEPT MATH,MONTREAL,PQ H3A 2K6,CANADA
关键词
D O I
10.2307/2375029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:1517 / 1554
页数:38
相关论文
共 24 条
[1]   DERIVED HEIGHTS AND GENERALIZED MAZUR-TATE REGULATORS [J].
BERTOLINI, M ;
DARMON, H .
DUKE MATHEMATICAL JOURNAL, 1994, 76 (01) :75-111
[2]  
BERTOLINI M, IN PRESS COMPOSITIO
[3]  
Bertrand D., 1982, PROGR MATH, V22, P1
[4]   THE INVARIANTS OF THE TATE-SHAFAREVICH GROUP IN A ZP-EXTENSION CAN BE INFINITE [J].
BRATTSTROM, G .
DUKE MATHEMATICAL JOURNAL, 1985, 52 (01) :149-156
[5]  
CASSELS JWS, 1967, ALGEBRAIC NUMBER THE
[6]   A REFINED CONJECTURE OF MAZUR-TATE TYPE FOR HEEGNER POINTS [J].
DARMON, H .
INVENTIONES MATHEMATICAE, 1992, 110 (01) :123-146
[7]   ON THE BIRCH AND SWINNERTON-DYER CONJECTURE [J].
GREENBERG, R .
INVENTIONES MATHEMATICAE, 1983, 72 (02) :241-265
[8]  
KOLYVAGIN VA, 1990, GROTHENDIECK FESTSCH, V2, P435
[9]   RATIONAL POINTS OF ABELIAN VARIETIES WITH VALUES IN TOWERS OF NUMBER FIELDS [J].
MAZUR, B .
INVENTIONES MATHEMATICAE, 1972, 18 (3-4) :183-266
[10]   CLASS FIELDS OF ABELIAN EXTENSIONS OF Q [J].
MAZUR, B ;
WILES, A .
INVENTIONES MATHEMATICAE, 1984, 76 (02) :179-330