On the Consistency of a Class of Nonlinear Regression Estimators

被引:14
作者
Abebe, Asheber [1 ]
McKean, Joseph W. [2 ]
Bindele, Huybrechts F. [3 ]
机构
[1] Auburn Univ, Dept Math & Stat, 221 Parker Hall, Auburn, AL 36849 USA
[2] Western Michigan Univ, Kalamazoo, MI 49008 USA
[3] Auburn Univ, Auburn, AL 36849 USA
关键词
Nonlinear regression; Signed-rank; Order statistics; Strong consistency;
D O I
10.18187/pjsor.v8i3.526
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we study conditions sufficient for strong consistency of a class of estimators of parameters of nonlinear regression models. The study considers continuous functions depending on a vector of parameters and a set of random regressors. The estimators chosen are minimizers of a generalized form of the signed-rank norm. The generalization allows us to make consistency statements about minimizers of a wide variety of norms including the L-1 and L-2 norms. By implementing trimming, it is shown that high breakdown estimates can be obtained based on the proposed dispersion function.
引用
收藏
页码:543 / 555
页数:13
相关论文
共 19 条
[1]  
Abebe A., 2007, FESTSCHRIFT HONOR MM, P340
[2]   CONSISTENCY IN NONLINEAR ECONOMETRIC-MODELS - A GENERIC UNIFORM LAW OF LARGE NUMBERS [J].
ANDREWS, DWK .
ECONOMETRICA, 1987, 55 (06) :1465-1471
[3]   Least trimmed squares in nonlinear regression under dependence [J].
Cizek, Pavel .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2006, 136 (11) :3967-3988
[4]  
Donoho D. L., 1983, FESTSCHRIFT L LEHMAN, P157
[5]  
Doob J.L., 1994, MEASURE THEORY
[6]  
Fraser DAS., 1957, NONPARAMETRIC METHOD
[7]   GENERAL QUALITATIVE DEFINITION OF ROBUSTNESS [J].
HAMPEL, FR .
ANNALS OF MATHEMATICAL STATISTICS, 1971, 42 (06) :1887-&
[8]  
Hettmansperger T. P., 2010, ROBUST NONPARAMETRIC
[10]   ASYMPTOTIC PROPERTIES OF NON-LINEAR LEAST SQUARES ESTIMATORS [J].
JENNRICH, RI .
ANNALS OF MATHEMATICAL STATISTICS, 1969, 40 (02) :633-&