A CLASS OF DIFFERENTIAL-EQUATIONS FOR TESTING VARIABLE STEP-SIZE INTEGRATION

被引:0
|
作者
WEBSTER, MB
BAKER, PW
机构
关键词
D O I
10.1016/0020-0190(86)90149-3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
引用
收藏
页码:103 / 107
页数:5
相关论文
共 50 条
  • [1] A variable step-size implementation of a variational method for stiff differential equations
    Amat, Sergio
    Jose Legaz, M.
    Pedregal, Pablo
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2015, 118 : 49 - 57
  • [2] A variable step-size method for solving stiff Lyapunov differential equations
    Choi, CH
    PROCEEDINGS OF THE 2001 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2001, : 4197 - 4199
  • [3] A variable step-size control algorithm for the weak approximation of stochastic differential equations
    A. Valinejad
    S. Mohammad Hosseini
    Numerical Algorithms, 2010, 55 : 429 - 446
  • [4] A variable step-size control algorithm for the weak approximation of stochastic differential equations
    Valinejad, A.
    Hosseini, S. Mohammad
    NUMERICAL ALGORITHMS, 2010, 55 (04) : 429 - 446
  • [5] A Novel Variable Step-Size Algorithm for Implicit Integration
    Zou, Jianxiao
    Zhou, Cuiyun
    Zheng, Gang
    ADVANCES IN CIVIL ENGINEERING, PTS 1-6, 2011, 255-260 : 2159 - 2163
  • [6] Improving the accuracy of a variable step-size method for solving stiff Lyapunov differential equations
    Choi, CH
    PROCEEDINGS OF THE 2003 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2003, : 2755 - 2760
  • [7] The Selection of the Step-Size Factor in the Variable Step-Size CMA
    Liu, Jia
    Zhao, Baofeng
    ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, PT I, 2011, 7002 : 288 - +
  • [8] Explicit variable step-size and time-reversible integration
    Holder, T
    Leimkuhler, B
    Reich, S
    APPLIED NUMERICAL MATHEMATICS, 2001, 39 (3-4) : 367 - 377
  • [9] A variable step-size selection method for implicit integration schemes
    Holsapple, Raymond
    Iyer, Ram
    Doman, David
    2006 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2006, 1-12 : 3013 - +
  • [10] Convergence and stability of split-step theta methods with variable step-size for stochastic pantograph differential equations
    Xiao, Yu
    Eissa, Mahmoud A.
    Tian, Boping
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (05) : 939 - 960