ON THE CARDINALITY OF THE SET OF SOLUTIONS TO CONGRUENCE EQUATION ASSOCIATED WITH CUBIC FORM

被引:0
作者
Aminudin, S. S. [1 ]
Sapar, S. H. [1 ,2 ]
Atan, K. A. Mohd [1 ]
机构
[1] Univ Putra Malaysia, Inst Math Res, Upm Serdang 43400, Malaysia
[2] Univ Putra Malaysia, Fac Sci, Dept Math, Upm Serdang 43400, Malaysia
来源
JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS | 2014年 / 33卷 / 01期
关键词
exponential sums; cardinality; p-adic sizes; Newton polyhedron;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (x) under bar =(x(1), x(2),..., x(n)) be a vector in the space Q(n) with Q field of rational numbers and q be a positive integer, f a polynomial in (x) under bar with coefficient in Q. The exponential sum associated with f is defined as S(f; q) = Sigma((x) under barq)e(2 pi if(x)/q), where the sum is taken over a complete set of residues modulo q. The value of S(f; q) depends on the estimate of cardinality vertical bar V vertical bar, the number of elements contained in the set V = {(x) under bar mod q vertical bar(f) under bar ((x) under bar) 0 mod q}, where (f) under bar ((x) under bar) is the partial derivative of (f) under bar with respect to (x) under bar. In this paper, we will discuss the cardinality of the set of solutions to congruence equation associated with a complete cubic by using Newton polyhedron technique. The polynomial is of the form f(x, y)= ax(3) + bx(2)y + cxy(2) + dy(3) + 3/2ax(2) + bxy + 1/2cy(2) + sx + ty + k.
引用
收藏
页码:1 / 23
页数:23
相关论文
共 10 条
[1]  
Atan K. A. Mohd., 1986, P DIOPH AN CAMBR, P67
[2]  
Atan K. A. Mohd., 1988, PERTANIKA, V11, P125
[3]  
Chan K. L., 1997, J PHYS SCI, V8, P21
[4]  
Heng S. H., 1999, J PHYS SCI, V10, P1
[5]  
KOBLITZ N, 1977, P ADIC NUMBERS P ADI
[6]   ESTIMATES FOR MULTIPLE EXPONENTIAL-SUMS [J].
LOXTON, JH ;
SMITH, RA .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1982, 33 (AUG) :125-134
[7]   THE ESTIMATION OF COMPLETE EXPONENTIAL-SUMS [J].
LOXTON, JH ;
VAUGHAN, RC .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1985, 28 (04) :440-454
[8]  
Mohd K. A., 1986, PERTANIKA, V9, P375
[9]  
Sapar S. H., 2002, J TECHNOLOGY, V36, P13
[10]  
Yap HK, 2011, SAINS MALAYS, V40, P921