FINITE CLONES CONTAINING ALL PERMUTATIONS

被引:8
作者
HADDAD, L [1 ]
ROSENBERG, IG [1 ]
机构
[1] UNIV MONTREAL,MONTREAL H3C 3J7,QUEBEC,CANADA
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 1994年 / 46卷 / 05期
关键词
D O I
10.4153/CJM-1994-054-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a finite set with Absolute value of A > 2. We describe all clones on A containing the set S(A) of all permutations of A among its unary operations. (A clone on A is a composition closed set of finitary operations on A containing all projections). With a few exceptions such a clone C is either essentially unary or cellular i.e. there exists a monoid M of self-maps of A containing S(A) such that either C = MBAR (= all essentially unary operations agreeing with some f is-an-element-of M) or C = M or GAMMA(h) where 1 < h less-than-or-equal-to Absolute value of A and GAMMA(h), consists of all finitary operations on A taking at most h values. The exceptions are subclones of Burle's clone or of its variant (provided Absolute value of A is even).
引用
收藏
页码:951 / 970
页数:20
相关论文
共 31 条
[1]   CLONES SATISFYING THE TERM CONDITION [J].
BERMAN, J ;
MCKENZIE, R .
DISCRETE MATHEMATICS, 1984, 52 (01) :7-29
[2]  
Burle G. A., 1967, DISKRET ANAL, V10, P3
[3]  
BUTLER JW, 1960, PAC J MATH, V10, P1169
[4]  
Cs83] Csakany B, 1983, ACTA CYBERN, V6, P227
[5]  
DAVIES RO, 1985, C MATH, V50, P1
[6]  
Gavrilov G. P., 1965, PROBL KIBERN, V15, P5
[7]  
GAVRILOV GP, 1959, DOKL AKAD NAUK SSSR+, V128, P21
[8]  
GAVRILOV GP, 1964, SOV MATH DOKL, V158, P1239
[9]  
GAVRILOV GP, 1964, SOV MATH DOKL, V156, P750
[10]  
HADDAD L, 1988, ANN SCI MATH QUEBEC, V12, P211