AN EFFICIENT SECOND-ORDER NON-ITERATIVE FINITE DIFFERENCE SCHEME FOR HYPERBOLIC TELEGRAPH EQUATIONS

被引:0
作者
Jun, Younbae [1 ]
Hwang, Hongtaek [1 ]
机构
[1] Kumoh Natl Inst Technol, Dept Appl Math, Gumi 730701, Gyeongbuk, South Korea
来源
JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS | 2010年 / 17卷 / 04期
关键词
second-order accuracy; domain decomposition; finite difference method; hyperbolic telegraph equation; unconditional stability;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we propose a second-order prediction/correction (SPC) domain decomposition method for solving one dimensional linear hyperbolic partial differential equation u(tt) + a(x, t)u(t) + b(x, t)u = c( x, t) u(xx) + f(x, t). The method can be applied to variable coefficients problems and singular problems. Unconditional stability and error analysis of the method have been carried out. Numerical results support stability and efficiency of the method.
引用
收藏
页码:289 / 298
页数:10
相关论文
共 19 条
[1]  
Ames WF., 1992, NUMER METH PART D E
[2]   Solving parabolic and hyperbolic equations by the generalized finite difference method [J].
Benito, J. J. ;
Urena, F. ;
Gavete, L. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 209 (02) :208-233
[3]  
Burden R.L., 2005, NUMERICAL ANAL
[4]   Finite element approximation of the hyperbolic wave equation in mixed form [J].
Codina, Ramon .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2008, 197 (13-16) :1305-1322
[5]  
Dawson Clint N., 1994, CONT MATH, P45
[6]   A new unconditionally stable compact difference scheme of O(τ2 + h4) for the 1D linear hyperbolic equation [J].
Ding, Hengfei ;
Zhang, Yuxin .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 207 (01) :236-241
[7]   Absorbing boundary conditions for the wave equation and parallel computing [J].
Gander, MJ ;
Halpern, L .
MATHEMATICS OF COMPUTATION, 2005, 74 (249) :153-176
[8]   A FINITE ELEMENT SPLITTING EXTRAPOLATION FOR SECOND ORDER HYPERBOLIC EQUATIONS [J].
He, Xiaoming ;
Lue, Tao .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (06) :4244-4265
[9]   ADI method - Domain decomposition [J].
Jun, Younbae ;
Mai, Tsun-Zee .
APPLIED NUMERICAL MATHEMATICS, 2006, 56 (08) :1092-1107
[10]  
Jun Y, 2006, J KOREAN SOC MATH ED, V13, P281