1+1 SOLVABLE RELATIVISTIC FIELD MODELS

被引:2
作者
DEGASPERIS, A
TINEBRA, F
机构
[1] NATL INST NUCL PHYS,ROME,ITALY
[2] UNIV BOLOGNA,DIPARTIMENTO FIS,I-40126 BOLOGNA,ITALY
关键词
D O I
10.1063/1.530107
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Nonlinear Lorentz invariant field models are constructed in such a way to be integrable by a transformation of a linear free field. The transformation is explicitly found by requiring that the U(1) conserved current keeps the same expression of the free field. This method is applied to the complex scalar and spinor fields in 1 + 1 dimensions. Localized nondispersive waves exist and interact with each other. A way of introducing nonlinear interactions between different fields is also given with the property of preserving integrability.
引用
收藏
页码:2950 / 2964
页数:15
相关论文
共 10 条
[1]  
Burgers J. M., 1974, NONLINEAR DIFFUSION
[2]   C-INTEGRABLE NONLINEAR PARTIAL-DIFFERENTIAL EQUATIONS IN N+1 DIMENSIONS [J].
CALOGERO, F .
JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (04) :1257-1271
[3]   THE ECKHAUS PDE I-PSI-T+PSIXX+2(/PSI/2)XPSI+/PSI/4PSI=0 [J].
CALOGERO, F ;
DELILLO, S .
INVERSE PROBLEMS, 1987, 3 (04) :633-681
[4]   C-INTEGRABLE NONLINEAR PARTIAL DIFFERENTIATION EQUATIONS .1. [J].
CALOGERO, F ;
JI, XD .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (04) :875-887
[5]  
Calogero F., 1982, SPECTRAL TRANSFORM S
[6]  
Calogero F., 1991, WHAT IS INTEGRABILIT, P1
[7]   LOCALIZED SOLUTIONS OF (N+1)-DIMENSIONAL EVOLUTION-EQUATIONS [J].
DEGASPERIS, A ;
SABATIER, PC .
PHYSICS LETTERS A, 1990, 150 (8-9) :380-384
[8]   COMPLETE INTEGRABILITY OF 2-DIMENSIONAL CLASSICAL THIRRING MODEL [J].
KUZNETSOV, EA ;
MIKHAILOV, AV .
THEORETICAL AND MATHEMATICAL PHYSICS, 1977, 30 (03) :193-200
[9]   3-DIMENSIONAL MODEL OF RELATIVISTIC-INVARIANT FIELD-THEORY, INTEGRABLE BY THE INVERSE SCATTERING TRANSFORM [J].
MANAKOV, SV ;
ZAKHAROV, VE .
LETTERS IN MATHEMATICAL PHYSICS, 1981, 5 (03) :247-253
[10]  
ZAKHAROV VE, 1978, ZH EKSP TEOR FIZ, V47, P1017